Интернет. Железо. Программы. Обзоры. Операционные системы
Поиск по сайту

Сверхлинейный умзч класса high-end на транзисторах (80вт). Высококачественый умзч nataly Высококачественный умзч

Анализ писем радиолюбителей, откликнувшихся на статью , позволил придти к следующим выводам. Во первых (и это естественно), все высказываются за создание простых в схемотехническом отношении усилителей мощности 3Ч (УМЗЧ); во-вторых, чем проще схема усилителя, тем менее подготовленные радиолюбители берутся за его сборку; в-третьих, даже опытные конструкторы нередко игнорируют известные правила монтажа, что приводит к неудачам при повторении УМЗЧ на современной элементной базе.

Исходя из сказанного, был разработан УМЗЧ (см. рис. 1) на базе усилителей, описанных в .

Его основные особенности - использование ОУ в малосигнальном режиме (как и в усилителе, описанном в ), что расширяет полосу частот сигналов, воспроизводимых без превышения скорости нарастания выходного напряжения ОУ ; транзисторов выходного каскада - в схеме ОЭ, а предоконечного - с разделенной нагрузкой в цепях эмиттеров и коллекторов. Последнее, кроме очевидного конструктивного преимущества - возможности размещения всех четырех транзисторов на общем теплоотводе, дает определенные преимущества по сравнению с выходным каскадом, в котором транзисторы включены по схеме OK .

Основные технические характеристики УМЗЧ :
Номинальный диапазон частот при неравномерности АЧХ 2 дБ, Гц... 20...20 000
Номинальная (максимальная) выходная мощность, Вт, на нагрузке сопротивлением, Ом:
4 ... 30(42)
8 ... 15(21)
Коэффициент гармоник при номинальной мощности, %, не более, в номинальном диапазоне частот... 0,01
Номинальное (максимальное) входное напряжение, В... 0,8(1)
Входное сопротивление, кОм... 47
Выходное сопротивление, Ом, не более... 0,03
Относительный уровень шума и фона, дБ, не более... -86
Амплитуда всплесков выходного напряжения при включении и выключении УМЗЧ, В, не более... 0,1

ОУ DA1 питается через тран-зисторы VT1 и VT2, которые снижают напряжения питания до требуемых значений. Токи покоя транзисторов создают падения напряжения на резисторах R8 и R9, достаточные для обеспечения необходимого напряжения смещения на базах транзисторов VT3, VT4 и VT5, VT6. При этом напряжения смещения для транзисторов оконечного каскада выбраны такими (0,35...0,4 В), чтобы они оставались надежно закрытыми при повышении напряжения питания на 10...15 % и перегреве на 60...80 °С. Снимаются они с резисторов R12, R13, которые одновременно стабилизируют режим работы транзисторов предоконечного каскада и создают местные ООС по току.
Соотношение между сопротивлениями резисторов R11 и R4 цепи ООС выбрано из условия получения номинального входного напряжения, равного 0,8 В. Включение цепей внешней коррекции и балансировки ОУ для простоты на схеме не показано (об этом будет сказано в разделе, посвященном налаживанию усилителя).

ФНЧ R3C2 и ФВЧ C3R10 с частотами среза в области 60 кГц предотвращают работу сравнительно низкочастотных транзисторов VT3-VT6 на более высоких частотах во избежание их пробоя. Конденсаторы С4, С5 корректируют ФЧХ предоконечного и оконечного каскадов, предотвращая их самовозбуждение при неудачном монтаже.
Катушка L1 повышает стабильность работы УМЗЧ при значительной емкостной нагрузке.
УМЗЧ питается от нестабилизированного выпрямителя. Он может быть общим для обоих каналов стереоусилителя, однако в этом случае емкость конденсаторов фильтра С8 и С9 необходимо увеличить вдвое, а диаметр провода вторичной обмотки трансформатора Т1 -в 1,5 раза. Предохранители включают в цепи питания каждого из усилителей.
Конструкция УМЗЧ может быть различной, однако некоторые конструктивные особенности, от которых зависит успех его повторения, должны быть обязательно учтены.

Чертеж печатной платы и размещение деталей одного канала УМЗЧ приведены на рис. 2

Длина выводов деталей должна быть не более 7... 10 мм (для удобства монтажа выводы ОУ DA1 укорачивают примерно до 15 мм). В УМЗЧ необходимо использовать керамические конденсаторы с номинальным напряжением не менее 50 В. Плату можно закрепить на теплоотводе транзисторов оконечного каскада с помощью стоек высотой 15...20 мм или в непосредственной близости от него, применив для соединения оконечного каскада с предоконечным какой-либо разъемный соединитель, например МРН-22 (гнезда и штыри соединителя включают в точках 1-5). В последнем случае сопротивление резисторов R12 и R13 следует выбрать равным 43... 47 Ом, а на розетке соединителя с подключенными к ней транзисторами VT5, VT6 установить резисторы такого же сопротивления R12" и R13" (это предотвратит выход из строя транзисторов при потере контакта в соединителе). Длина проводников между платой и транзисторами оконечного каскада должна быть не более 100 мм.

Кроме указанного на схеме, в УМЗЧ можно применить ОУ К140УД6Б, К140УД7А, К544УД1А, однако коэффициент гармоник на частотах выше 5 кГц возрастет в этом случае примерно до 0,3 %.

Транзисторы предоконечного каскада располагают на теплоотводе, согнутом из пластины размерами 70Х35ХЗ мм (без учета лапки с отверстием диаметром 2,2 мм) из алюминиевого сплава, которую одним винтом М2Х8 с гайкой крепят к плате для предотвращения обрыва выводов транзисторов при случайных механических воздействиях.

Транзисторы оконечного каскада можно расположить как на общем для каждого канала УМЗЧ теплоотводе, так и на теплоотводе, общем для обоих каналов. В первом случае их закрепляют на теплоотводе и изолируют последний от корпуса УМЗЧ, во втором - изолируют транзисторы, а теплоотвод может представлять собой конструктивный элемент корпуса усилителя. Для уменьшения теплового сопротивления корпус транзистора - теплоотвод необходимо использовать теплопроводную пасту. При использовании отдельных (для каждого канала) теплоотводов можно применять транзисторы в пластмассовом корпусе, которые из-за малой площади металлических оснований могут перегреваться при плохом выполнении прокладок или неплотном тепловом контакте с теплоотводом и чрезмерном количестве пасты в зазоре. На общем для обоих каналов теплоотводе целесообразно устанавливать транзисторы в металлическом корпусе. Площадь теплоотвода в расчете на один транзистор должна быть не менее 500 см2.

Большое значение имеет монтаж УМЗЧ, соединение его каналов с источником питания. Провода питания (+22 В, -22 В и общий) должны быть возможно более короткими (к каждому каналу они должны быть проложены отдельно) и достаточно большого сечения (при максимальной мощности 42 Вт-не менее 1,5 мм2). Проводами такого же сечения должны быть подключены акустические системы, а также цепи эмиттеров и коллекторов транзисторов оконечного каскада к плате УМЗЧ.

Налаживают УМЗЧ при отключенном оконечном каскаде. Если для соединения частей УМЗЧ применен разъемный соединитель, удобно воспользоваться технологической розеткой, к которой подсоединены только провода питания и выход генератора сигналов 3Ч. При, непосредственном соединении оконечных транзисторов с платой УМЗЧ достаточно удалить перемычки из припоя с печатных проводников цепей их баз и временно припаять последние к выводам эмиттеров.

Для балансировки ОУ DA1 (если в этом возникнет необходимость) на плате предусмотрены отверстия под подстроенный и постоянные резисторы или проволочные перемычки для соединения выводов микросхемы в соответствии со схемой балансировки для конкретного типа. Например, для балансировки ОУ К544УД2 его выводы 1 и 8 через резистор сопротивлением 62 кОм соединяют с выводом движка и одним из выводов резистивного элемента подстроенного резистора сопротивлением 22 кОм. Свободный вывод этого резистора соединяют проволочной перемычкой с выводом 7 ОУ, а через резистор сопротивлением 75 кОм "- с выводом 5 (на рис. 2 эти элементы показаны штриховыми линиями). При использовании ОУ К544УД1 его вывод 1 через резистор сопротивлением 4.3 кОм соединяют с выводами подстроенного резистора сопротивлением 1,5 кОм. Его свободный вывод подключают к выводу 8 ОУ через резистор сопротивлением 5,1 кОм, а к выводу 7 - проволочной перемычкой. Для балансировки ОУ К140УД6 и К140УД7 используют резисторы тех же номиналов, но свободный вывод подстроечного резистора соединяют через постоянный резистор с выводом 5, а перемычкой - с выводом 4 ОУ. Впрочем, балансировка может и не понадобиться, поэтому эти детали устанавливают только при необходимости.
Налаживание начинают с того, что вход усилителя замыкают накоротко, к выходу подсоединяют осциллограф, включенный в режим максимальной чувствительности, и кратковременно подают питание. Если на выходе нет переменного напряжения, т. е. самовозбуждение отсутствует, измеряют режим работы транзисторов VT3, VT4 и ОУ DA1 по постоянному току. Напряжения питания ОУ должны лежать в пределах +13,5...14 и -13,5...14 В и быть примерно одинаковыми (отклонение допустимо в пределах 0,2...0,3 В). Падения напряжения на резисторах R12 и R13 должны быть равны 0,35...0,4 В. Если же они значительно (более чем на 10 %) отличаются от указанной величины, необходимо подобрать резисторы R8, R9, следя за тем, чтобы их новые сопротивления оставались одинаковыми. Заменяют резисторы при выключенном питании УМЗЧ. Ориентировочное сопротивление резисторов для ОУ К544УД2А указано на схеме. При использовании ОУ К544УД1А и К140УД6 за исходное следует выбрать их сопротивление 680 Ом, а при использовании К140УД7 - 560 Ом.

Подобрав резисторы R8, R9, измеряют постоянное напряжение на выходе УМЗЧ и, если оно превышает 20... 30 мВ, балансируют ОУ DA1. Затем подсоединяют базы транзисторов VT5, VT6 к эмиттерам VT3, VT4 и, кратковременно включив питание, убеждаются, что и в таком виде УМЗЧ не самовозбуждается. Напряжение шумов и фона переменного тока при замкнутом накоротко входе не должно превышать 1 мВ.
Далее к выходу УМЗЧ подключают резистор сопротивлением 16 Ом с мощностью-рассеяния 10...15 Вт, размыкают вход УМЗЧ, подключают к нему настроенный на частоту 1 кГц генератор и, постепенно увеличивая его сигнал до получения на нагрузке напряжения 13,5...14 В, проверяют симметричность ограничения положительных и отрицательных полуволн синусоиды.

Минимального (в указанных пределах) постоянного напряжения на выходе усилителя добиваются при необходимости окончательной балансировкой ОУ DA1. После этого можно приступить к измерению основных характеристик УМЗЧ, нагрузив его номинальной нагрузкой - резистором сопротивлением 4 или 8 Ом. Более подробно особенности налаживания УМЗЧ такого типа описаны в [З].

Максимальная выходная мощность на нагрузке сопротивлением 4 Ом, Вт Схема № рисунка в тексте Рекомендуемый тип ОУ DA1 Рекомендуемые пары транзисторов оконечного каскада Сопротивление резисторов,Ом (кОм) Переменное наряжение, В
(ток, А) вторичной обмотки трансформатора Т1
Постояное напряжение питания УМЗЧ, В (в отсутствие сигнала) Ток предохранителя, А
R6,R7 (рис.1) R8,R9 (рис1) R6,R7 (рис.2)
15 3 К140УД6 КТ805А и Т837А

КТ805Б и Т837Б

КТ818Б и Т819Б

КТ818В и Т819В

КТ818Г и КТ819Г

- 680 24(2) +17и-17 3

Следует, однако, учесть, что попытка наладить, а тем более точно оценить параметры УМЗЧ, собранного без соблюдения указанных выше правил монтажа, не установив его на предназначенное для него место и не питая его от собственного блока питания, не только не даст желаемого результата, но и может привести к выходу из строя транзисторов выходного каскада. К налаживанию УМЗЧ и измерению его характеристик следует приступать только после полного завершения его конструкции. Простота усилителя только кажущаяся. Не следует забывать, что в составе как ОУ DA1, так и УМЗЧ в целом применены транзисторы с максимальными частотами генерации 100...300 МГц, причем в выходных каскадах - со значительными емкостями переходов, которые способны привести к самовозбуждению даже при кажущемся отсутствии цепей обратной связи и нагрузок достаточной величины. Незначительная индуктивность провода цепи эмиттера, параллельное расположение на значительной длине проводов цепей базы и коллектора могут стать причиной самовозбуждения на высоких частотах, что крайне опасно для транзисторов оконечного и предоконечного каскадов. (Впрочем, это справедливо не только для описываемого устройства, но и для УМЗЧ, собранного по любой другой схеме.)

Характеристики УМЗЧ измеряют по общеизвестным методикам с использованием соответствующей измерительной аппаратуры. Для измерения отдельных параметров, значения которых лежат за пределами возможностей серийных измерительных приборов (например, малых нелинейных искажений), можно пользоваться методиками, опубликованными в журнале «Радио» (см., например, ).

При измерении коэффициента гармоник и относительного уровня шумов и помех следует помнить о возможных наводках со стороны питающей сети, теле- и радиопередатчиков, телевизоров и других радиоприборов из-за плохой экранировки соединительных проводов, входа УМЗЧ и чувствительных измерительных приборов, а также при отсутствии соединения их незаземленных корпусов друг с другом. Иногда достаточно переставить в розетке вилку кабеля питания одного из приборов или УМЗЧ, чтобы получить неверный результат. Кстати, не следует пользоваться известным из старой радиолюбительской практики способом проверки УМЗЧ прикосновением пальца к его входной цепи. Это может привести к такому уровню высокочастотных наводок, что выходные транзисторы выйдут из строя.

Рассмотренная схема может быть взята за основу при создании УМЗЧ с различной выходной мощностью. Для этого надо лишь изменить ряд элементов УМЗЧ и блока питания. Некоторые рекомендации по этому поводу можно почерпнуть из таблицы. При постройке УМЗЧ с выходной мощностью примерно 25 Вт часть элементов можно исключить (см. рис. 3).

Как видно, вместо резистора в цепи неинвертируюшего входа ОУ DA1, соединенного с общим проводом, здесь применен делитель из резисторов R1-R3, что позволило отказаться от среднего вывода вторичной обмотки сетевого трансформатора Т1. Это позволяет использовать трансформаторы с напряжением вторичной обмотки 24...28 В и обеспечивает защиту акустической системы от выхода из строя при пробое одного из транзисторов оконечного каскада.

УМЗЧ по схеме на рис. 3 можно смонтировать на той же печатной плате (см. рис. 4). В этом случае отверстия под выводы резисторов R2, R5-R7 оставляют свободными, резисторы R8 и R9 впаивают непосредственно в цепи питания ОУ DA1, для чего в отверстия под выводы эмиттеров и коллекторов транзисторов VT1, VT2 устанавливают проволочные перемычки. При выходной мощности менее 25 Вт в оконечном каскаде можно применять транзисторы серий КТ805 и КТ837 с любыми буквенными индексами.

Налаживание УМЗЧ по схеме рис. 3 не отличается от описанного выше.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Список компонентов для схемы на рис. 1
DA1 Микросхема К544УД2А 1 К140УД6Б, К140УД7А, К544УД1А В блокнот
VT1 Биполярный транзистор

КТ315А

1 В блокнот
VT2 Биполярный транзистор

КТ361А

1 В блокнот
VT3 Биполярный транзистор

КТ814Б

1 В блокнот
VT4 Биполярный транзистор

КТ815Б

1 В блокнот
VT5 Биполярный транзистор

КТ818Б

1 В блокнот
VT6 Биполярный транзистор

КТ819Б

1 В блокнот
VD1-VD4 Диод

КД202В

4 В блокнот
C1 Конденсатор 1 мкФ 1 В блокнот
C2 Конденсатор 470 пФ 1 В блокнот
C3 Конденсатор 0.033 мкФ 1 В блокнот
C4, C5 Конденсатор 270 пФ 2 В блокнот
C6, C7 Конденсатор 0.15 мкФ 2 В блокнот
C8, C9 Электролитический конденсатор 4700 мкФ 25 В 2 В блокнот
C10, C11 Конденсатор 0.047 мкФ 2 В блокнот
R1 Резистор

47 кОм

1 В блокнот
R2, R5 Резистор

3.3 кОм

2 В блокнот
R3 Резистор

4.7 кОм

1 В блокнот
R4 Резистор

300 Ом

1 В блокнот
R6, R7 Резистор

1.8 кОм

2 В блокнот
R8, R9 Резистор

200 Ом

2 В блокнот
R10 Резистор

39 Ом

1 В блокнот
R11 Резистор

3.9 кОм

1 В блокнот
R12, R13 Резистор

22 Ом

2 В блокнот
R14, R15 Резистор

1 кОм

2 2 Вт В блокнот
L1 Катушка индуктивности 3 мкГн 1 В блокнот
T1 Трансформатор 220 В - 2x17 В 1 В блокнот
FU1, FU2 Плавкий предохранитель 3 А 2 В блокнот
Радиатор 1 В блокнот
Список компонентов для схемы на рис. 2
DA1 Микросхема К140УД6А 1 В блокнот
VT1 Биполярный транзистор

КТ814А

1 В блокнот
VT2 Биполярный транзистор

КТ815А

1 В блокнот
VT3 Биполярный транзистор

КТ818А

1 В блокнот
VT4 Биполярный транзистор

КТ819А

1 В блокнот
VD1-VD4 Диод

КД202В

4 В блокнот
C1 Конденсатор 1 мкФ 1

Отдаваемое в последнее время предпочтение ламповым выходным усилителям мощности звуковой частоты для звуковоспроизведения высокой верности трудно понять, исходя из объективного их сравнения с транзисторными УМЗЧ. Ведь по всем измеряемым характеристикам современный УМЗЧ на транзисторах существенно превосходит ламповый. На наш взгляд, измеряемыми обычно нелинейными искажениями (НИ) не исчерпываются те искажения, которые определяют качество звуковоспроизведения.

В самых совершенных конструкциях транзисторных УМЗЧ уровень НИ доведен практически до слухового порога и даже ниже, поэтому сомнительно, что их можно воспринимать на слух, тем более в условиях маскировки полезным сигналом.

Дело, по-видимому, в том, что обычно измеряют НИ в установившемся режиме, когда переходный процесс после подачи на вход испытываемого усилителя измерительного сигнала уже завершен как на входе, так и на выходе усилителя, а в замкнутой петле общей отрицательной обратной связи (ООС) установился стационарный колебательный процесс, отвечающий с большей или меньшей точностью поступающему на вход сигналу.

Очевидно, что нелинейность усилителя проявляется гораздо сильнее во время переходного процесса (длительность которого за счет задержки сигнала в цепи ООС может быть значительной), особенно на его начальном этапе, когда действие ООС наименее эффективно (из-за упомянутой задержки).

В отличие от динамических искажений, приводящих к перегрузке входного каскада на протяжении всей длительности неблагоприятного по параметрам входного сигнала - рассматриваемые переходные НИ имеются даже тогда, когда отсутствуют динамические, но только пока переходный процесс не закончен.

А если учесть, что реальные звуковые программы очень далеки от стационарности и на самом деле вызывают в УМЗЧ почти непрерывный переходный процесс, то при воспроизведении таких программ НИ могут намного превышать измеренные обычными методами в одном и том же экземпляре усилителя.

Вследствие малой длительности переходного процесса по сравнению с временем лабораторных измерений они пока "ускользают" от экспериментального изучения (для этого требуется разработка специальных методов) и в то же время легко воспринимаются на слух на протяжении звучания всей фонограммы.

С этой точки зрения становится понятным преимущество ламповых усилителей: хотя измеряемый уровень НИ у них больше (это относится только к стационарному режиму), в реальных условиях лампы как гораздо более линейные приборы обеспечивают меньшие НИ, чем транзисторы (хотя, конечно, большие, чем те же лампы в стационарном режиме), что и обусловливает лучшее звучание ламповых усилителей.

Однако очевидны такие недостатки ламповых усилителей, как неудобства в эксплуатации, громоздкость и большая масса, значительная потребляемая мощность при сравнительно низких КПД и выходной мощности.

В этой связи выглядело бы заманчивым создание транзисторного усилителя с реальным уровнем НИ не хуже, чем у лампового. Последнее означает, что измеряемый по обычным методикам уровень НИ такого усилителя должен быть снижен на один-два порядка (!) по сравнению с лучшими образцами (можно и больше), чтобы НИ в нестационарном режиме имели приемлемую величину.

Однако применяемые сейчас методы линеаризации транзисторных усилителей, по-видимому, себя уже исчерпали и не позволят достичь требуемого коэффициента НИ (0=0,0001 ...0,00001 %).

Поэтому была поставлена задача изучить возможность получения такого рекордно низкого уровня собственных НИ транзисторного УМЗЧ, не останавливаясь перед сложностью схемотехнических решений, а затем и решить, оправдан ли такой подход, приносит ли он выигрыш по качеству звучания по сравнению с существующими схемами.

Представляемая в настоящей работе конструкция адресована в первую очередь самым взыскательным ценителям высококачественного звуковоспроизведения. Она разработана на основе изложенного в принципа, который является усовершенствованием известного метода снижения искажений, описанного в .

Рис. 1-3. Блок-схемы усилителей.

На рис.1 изображена блок-схема двухкаскадного усилителя с передаточной функцией первого каскада К1 и второго К2, передаточной функцией b цепи общей ООС, охватывающей весь усилитель, и передаточной функцией g цепи местной положительной обратной связи (МПОС), охватывающей первый каскад. Результирующая передаточная функция такого устройства описывается выражением К=К1К2/(1-тК1+рК1К2). (1)

Если установить усиление в петле МПОС тК1=1, то окажется, что в отличие от усилителя с одной ООС, у которого К = К1К2/(1+ |ЗК1К2) и только приближенно К=1/р (при |ЗК1К2»1), передаточная функция данного усилителя будет точно равна 1/р.

При этом глубина ООС должно быть больше глубины МПОС, т.е. |ЗК1К2>уК1, что является необходимым (но недостаточным) условием устойчивости. Таким образом, при уК1=1 подавляются все искажения, которые возникают во втором каскаде и причиной которых является непостоянство его передаточной функции (поскольку К=1/|3 и не зависит от К2).

Однако абсолютно полное подавление искажений возможно только при идеальном первом каскаде. Реально же ему присущи как нелинейные, так и частотные искажения, приводящие к отклонению передаточной функции К1 от оптимального значения. Кроме того, оно изменяется из-за колебаний питающих напряжений, температурного дрейфа и изменения со временем параметров деталей.

Проблемой является и обеспечение совместной устойчивости такой сложной системы при совместном действии ООС и ПОС (второе условие устойчивости), так как введение ПОС уменьшает запас устойчивости исходной системы .

С другой стороны, желательно (для получения наибольшей линейности), чтобы глубина как ПОС, так и ООС была постоянной в рабочем диапазоне частот, т.е. чтобы первый полюс АЧХ системы с разомкнутыми обратными связями находился на частоте f>20...30 кГц, и частота среза в петле ПОС была также не меньше.

Между тем выполнить последние требования и одновременно обеспечить надежный запас устойчивости вовсе не просто, а отступление от них значительно снижает эффективность метода. Видимо, поэтому автору неизвестны примеры использования описанного принципа подавления искажений для целей высококачественного звуковоспроизведения.

Принципиальным недостатком устройства, показанного на рис.1, является, как показывает анализ, то, что петля МПОС включена последовательно в цепь ООС. Значительно улучшить работу устройства можно путем параллельного подключения петли МПОС к петле ООС, т.е. подключив вход второго каскада не к выходу первого каскада (точка 2 рис.1), а к его входу (точка 1).

Блок-схема устройства, предложенного в , показана на рис.2. Важнейшим преимуществом такого устройства является меньший фазовый сдвиг, вносимый в петлю ООС элементами схемы МПОС (от входа устройства до входа второго каскада).

Это понятно из сравнения рис.2 с рис.1, так как очевидно, что фаза сигнала в точке 2 отстает от фазы в точке 1 (рис.1) на фазовый сдвиг, вносимый первым каскадом (и этот сдвиг может быть весьма существенным на частотах 0,2... 1 МГц и выше, в области которых должно обеспечиваться устойчивость устройства).

Данное преимущество является решающим для применения этого метода компенсации искажений в высококачественных УМЗЧ, так как вносимые при его использовании минимальные фазовые сдвиги позволяют получить достаточный запас устойчивости и тем самым обеспечить надежную работу усилителя с МПОС.

Достоинством устройства, показанного на рис.2, является также возможность более независимого (хотя независимость эта относительная, поскольку петли по-прежнему взаимодействуют между собой) и оптимального выбора параметров петель МПОС и ООС в соответствии с их функциональным назначением, которое существенно различно.

Эта большая независимость видна из выражения для передаточной функции усовершенствованной системы К = К2/(1 -7KI +|ЗК2), (2) которое, в отличие от (1), не содержит смешанных произведений передаточных функций элементов, относящихся к различным петлям.

Такое разделение невозможно в устройстве, показанном на рис.1, где первый каскад является общей частью петель МПОС и ООС, вследствие чего его параметры определяют одновременно и свойства ООС, и свойства ПОС. Требования к этим параметрам во многом противоречивы, что также затрудняет решение задачи максимального подавления искажений.

Преимущества параллельного подключения петли МПОС к петле ООС позволяют практически реализовать устройство даже не с одной, а с двумя МПОС, взаимно усиливающими действие друг друга и тем самым улучшающими компенсацию искажений. Блок-схема такого устройства показан на рис.3, где К1, К2, КЗ - передаточные функции трех каскадов основного канала усилителя; в -передаточная функция цепи ООС; а1у1 и а2у2 -передаточные функции первой и второй петли МПОС соответственно, причем равенства а1у1=1 и а2у2=1 устанавливаются с возможно большей точностью. Из его передаточной функции К = К1К2К3/[(1- а1у1)(1-а2у2)+рК1К2К3] (3) следует, что поскольку 1- а1у1<<1, то степень подавления искажений, зависящая от выражения (1-а1у1)(1-а2у2), значительно больше, чем в устройстве с одной петлей МПОС, в котором эта степень определяется одним членом 1 -а1у1<<(1-а1у1)(1-а2у2).

Однако самым замечательным является то, что при одной МПОС минимально достижимый уровень НИ нельзя сделать меньше искажений, вносимых элементами самой петли МПОС, а в устройстве с двумя (или более) петлями МПОС, как показывает расчет, собственные НИ каждой петли МПОС подавляются действием другой, т.е. возможно снизить НИ ниже уровня, определяемого самым линейным блоком устройства, каким должен быть контур МПОС.

Это является существенным преимуществом данного метода компенсации искажений перед другими, позволяющими снижать искажения лишь до предела, определяемого собственной нелинейностью схемы компенсации.

Заметим, что все сказанное выше полностью относится к тем искажениям, которые обусловлены непостоянством передаточных функций (кроме нелинейных, например, амплитудно-частотных). Такие искажения компенсируются в любых частях устройства, кроме цепи ООС b.

Можно показать, что эти искажения компенсируются, если они возникают в частях устройства, находящихся между петлей МПОС и выходом устройства, включая и сам выход, а возникающие между входом устройства и петлей МПОС не компенсируются. Поэтому уровень шума устройства, показанного на рис.3, определяется в основном шумовыми свойствами входного каскада.

Характеристики усилителя мощности

  • Номинальное входное напряжение 0,3 В;
  • Номинальная выходная мощность на нагрузке 8 Ом (4 Ом) - 40 (80) Вт;
  • Частотный диапазон при завалах на краях не более 0,5 дБ - 15-100000 Гц;
  • Входное сопротивление - 50 кОм;
  • Выходное сопротивление - 0 Ом;
  • (с контурами МПОС) Коэффициент интермодуляционных искажений, не более 0,005 %;
  • Уровень шума(взвешенный) -105 дБ (с контурами МПОС).

Принципиальная схема УМЗЧ

Принципиальная схема УМЗЧ, соответствующая рис.3, изображена на рис.4. Для получения как можно более низкого уровня НИ основной канал усилителя (без МПОС) задуман как достаточно линейный УМЗН.

Рис. 4. Принципиальная схема транзисторного усилителя мощности НЧ на 80Ватт Hi-End класса.

Для этого все каскады усилителя выполнены двухтактными на комплементарных парах транзисторов, что позволило сделать оба плеча симметричными относительно общего провода и получить более линейную амплитудную характеристику.

Все транзисторы работают в режиме А, за исключением выходного каскада с плавающим смещением на входе (супер-А), которое задается схемой на элементах VT15-VT18, R38-R41, VD15, VD16. Это обеспечивает не выключающийся режим работы оконечных транзисторов при их малом токе покоя.

Входной каскад выполнен по каскадной схеме (VT1, VT3, VT2, VT4). Режим роботы его транзисторов выбран так, что они не входят в режим отсечки или ограничения тока при действии на входе сигналов с амплитудой, в несколько раз превышающей номинальное входное напряжение даже при отключенной ООС.

Этим он выгодно отличается от традиционного дифференциального каскада. Цепочка R19, R18, С7 с частотой среза 90 кГц ограничивает усиление самых высокочастотных составляющих импульсных сигналов, предотвращая перегрузку и последующих каскадов усилителя.

Благодаря этим мерам, а также высокому быстродействию за счет отказа от применения в каскадах транзисторов с общим эмиттером и коррекции по опережению (конденсаторы С5, С6), динамические искажения в усилителе отсутствуют, что особенно важно для устойчивой роботы системы с ПОС.

Напряжение ООС с выхода усилителя подается в точку соединения резисторов R11 и R12, которые вместе с R10 и R13 определяют рабочий ток VT1 и VT2. Одновременно R10 и R13 в составе делителей R14/R10C3 и R15/R13C4 задают передаточную функцию цепи ООС.

Постоянная составляющая выходного напряжения поступает на эмиттеры входных транзисторов через R10R11 и R12R13, а не только через R14 и R15, поэтому глубина ООС по постоянному напряжению намного больше, чем по переменному, и осуществляется жесткая стабилизация постоянной составляющей напряжения на выходе УМЗЧ.

Использование электролитических конденсаторов С3, С4 не приводит, как следует из измерений, к существенному увеличению искажений, так как они поляризованы постоянным напряжением около 4 В (переменная составляющая намного меньше), так что режим их работы практически линеен.

Второй каскад на транзисторах VT5-VT8, включенных по схеме ОК-ОБ, является буферным между двумя контурами МПОС. Диоды VD3-VD6 задают напряжение смещения на базах эмиттерных повторителей VT9, VT10, а диоды VD7, VD8 защищают от слишком сильного его увеличения при неисправностях в усилителе или перегорании одного из предохранителей.

Усилитель напряжения (VT11, VT13 VT12, VT14) также выполнен по каскодной схеме. Напряжение питания первых каскадов около 21 В и задается стабилизатором (VT23, VT24, VD17, VD18). Выходные транзисторы работают с малым током покоя, поэтому термостабилизация их не требуется.

Элементы частотной коррекции R19R18C7, R27C10, R22C8, R23C9 формируют АЧХ усилителя, обеспечивая его устойчивость при действии OOC. Одновременно R19 и R27 служат нагрузкой входного и буферного каскадов соответственно, а также нагрузкой петель МПОС, определяя их коэффициент усиления.

В контурах МПОС использованы полевые транзисторы для минимизации собственных искажений контуров. Каждый контур МПОС -усилительный каскад с коэффициентом передачи около единицы, изменять который можно подстроечными резисторами R58 и R67.

Непосредственным соединением выхода каскада с его входом осуществляется 100%-ная ПОС. Цепочки R57C15 и R66C16 корректируют АЧХ каскадов, улучшая точность компенсации на частотах звукового диапазона. Контуры МПОС подключают к основному каналу в узловых точках А, В и к общему проводу.

Рабочие точки транзисторов первых каскадов и контуров МПОС жестко стабилизированы высокоомными резисторами в их эмиттерных (истоковых) цепях. Этим достигается постоянство характеристик каскадов, подключенных к точкам А и В.

Кроме того, транзисторы VT3VT4 и VT27VT28, VT7VT8 и VT31VT32 - динамическая нагрузка друг для друга, а эмиттерные повторители VT5VT6, VT9VT10 и полевые транзисторы VT25VT26 и VT29VT30 обладают высоким входным сопротивлением, поэтому сопротивление нагрузки для петель МПОС определяется резисторами R19, R27 (на звуковых частотах).

Благодаря этому удалось добиться высокой стабильности усиления в петлях МПОС, которое не зависит от температуры и не изменяется с течением времени.

Налаживание усилителя

Затем подстроечными резисторами R7, R20 и R31 установить нулевое напряжение на выходе усилителя и в узловых точках А и В соответственно. Проверить суммарное падение напряжения на парах диодов VD3VD4, VD5VD6, VD11VD12, VD13VD14, которое должно быть около 2 В. После этого проверить ток покоя выходных транзисторов

VT21, VT22, который должен быть в пределах 20...30 мА. Величину его нужно установить подбором резисторов R38, R39, при которых искажения типа "ступенька" отсутствуют.

К выходу усилителя подключают эквивалент нагрузки сопротивлением 4.8 Ом и проверяют работу схемы плавающего смещения оконечной ступени.

Для этого подключают осциллограф к базам VT19 и VT20 и на вход усилителя подают синусоидальный сигнал с частотой 100 Гц. Осциллограмма должна иметь вид пульсирующего напряжения (типа "выпрямленной" синусоиды) с амплитудой около 5 В при номинальном выходном напряжении и сопротивлении нагрузки 4 Ом. При увеличении сопротивления нагрузки или уменьшении входного сигнала эта амплитуда должна уменьшаться.

Проверяют прохождение через усилитель прямоугольных импульсов. Выбросы на осциллограммах выходного напряжения должны отсутствовать, в противном случае увеличивают емкость конденсаторов С5 и С6. На этом настройку основного канала можно считать законченной.

Отметим, что уже базовый усилитель (без контуров МПОС) обладает следующими достаточно высокими характеристиками (смотри начало статьи).

Настраивают контуры МПОС, подключив их к схеме и установив движки R58, R67 в положение максимального сопротивления, т.е. минимального петлевого усиления контуров МПОС.

Напряжение между стоком и истоком полевых транзисторов должно быть не более 10 В (максимально допустимое для транзистора КП103), но и не слишком малым, в противном случае добиваются нужного значения подбором резисторов R51, R52, R60, R61. Желательно, чтобы комплементарные транзисторы были подобраны в пары с близкими значениями начального тока стока и напряжения отсечки.

Вход усилителя закорачивают, к выходу подключают акустическую систему (АС) или измерительный прибор, а сигнал от источника (генератора сигналов или источника музыкальной программы, богатой низко- и высокочастотными составляющими) с высокоомным выходом подают в узловую точку В, имитируя сигнал искажений.

Общий провод источника соединяют с общим проводом усилителя. Регулировкой R58 добиваются максимального ослабления сигнала на выходе усилителя. Подбором R57C15 улучшают подавление высокочастотных составляющих спектра сигнала.

Настроив первый контур МПОС, отключают его от точки А, а источник- имитатор искажений - от точки В. Выход имитатора подключают параллельно резистору R35 и настраивают второй контур МПОС аналогично первому. После этого вновь подключают первый контур МПОС и наблюдают дополнительное подавление сигнала.

На завершающем этапе проводят прямую проверку подавления НИ в усилителе. Достаточно измерить лишь коэффициент интермодуляционных искажений ОИ, так как при достаточно малых его значениях коэффициент гармонических искажений заведомо приемлем.

В соответствии с методикой на вход усилителя подают два синусоидальных сигнала с частотой 25-30 кГц и разностью частот 1 кГц при одинаковой амплитуде, не превышающей половины номинальной, и оценивают уровень звука, воспроизводимого АС.

При отключенных контурах МПОС можно расслышать очень тихий звук (соответствующий 0И=0,005%), который при их подключении полностью исчезает.

Для наглядной демонстрации подавления НИ можно временно увеличить нелинейность базового усилителя путем подключения цепочки из последовательно соединенных диода в проводящем направлении (например, Д9) и резистора сопротивлением 47 кОм параллельно резистору R9.

При этом ОИ базового усилителя возрастает примерно до 0,5%, комбинационная частота становится отчетливо различимой, и можно более уверенно судить о ее подавлении при подключении контуров МПОС.

Из таких измерений следует, что каждый из контуров МПОС подавляет искажения не менее чем на 30 дБ, а оба они вместе - почти на 60 дБ, так что НИ всего усилителя измерить обычными методами невозможно из-за их крайне малой величины, а можно только оценить с учетом ОИ базового усилителя, уменьшенного на три порядка, что дает фантастическую величину 0И=0,00001%)!

Следует отметить еще одну положительную сторону применения МПОС в усилителе. Так как при прекращении действия общей ООС коэффициент усиления из-за действия ПОС стремится возрастать, то при задержках сигнала в цепи ООС контуры МПОС становятся фактически форсирующими корректирующими устройствами, которые ускоряют процессы в системе и уменьшают фазовый сдвиг между входным и выходным сигналами . Благодаря этому улучшается качество переходного процесса, что также способствует уменьшению искажений.

Субъективное впечатление от работы данного усилителя трудно передать словами, нужно слышать чистоту и прозрачность его звучания. В этом отношении он не только не уступает ламповым усилителям, но и заметно превосходит их, не внося в звуковую картину практически ничего "от себя".

Опыт его эксплуатации в течение 5 лет показал надежность конструкции, а периодические проверки - хорошую стабильность настройки и сохранение точности компенсации искажений в заданных пределах без дополнительных регулировок.

Детали и печатная плата

Печатная плата разработана с учетом обычных требований. Блоки МПОС на транзисторах VT25-VT32 выполнены на двух отдельных небольших платах и в виде модулей и закреплены перпендикулярно плате основного усилителя вблизи узловых точек А и В.

Рис. 5-6. Печатные платы для схемы высококачественного усилителя мощности НЧ.

В усилителе использованы резисторы типа МЛТ, подстроечные резисторы типа СПЗ-29М, конденсаторы К50-16 (СЗ, С4, С11-С14), K73-I7 (C1, C2), КД1, KT1 -остальные. Теплоотводы транзисторов VT21, VT22 расположены вблизи элементов схемы плавающего смещения оконечного каскада для компенсации температурной нестабильности тока покоя выходных транзисторов.

Печатные платы выполнены из фольгированного текстолита. Размер платы основного канала (рис.5) 150 х 105 мм, модулей МПОС (рис.6) 105 х 30 мм.

После распайки всех деталей модули МПОС устанавливают на основную плату вдоль направлений, указанных стрелками на рис.1. Соответствующие печатные проводники плат соединяются согласно принципиальной схемы с помощью проволочных перемычек. Шины общего провода можно соединить с помощью проволочных растяжек, удерживающих платы во взаимно перпендикулярном положении.

Отключение и подключение контуров МПОС при настройке производится перемычками между узловыми точками А, Б и соответствующими точками модулей МПОС.

Для стерео усилителя платы основного канала и модулей МПОС имеют вдвое большую ширину - не 105, а 210 мм, и на них нанесены по два одинаковых рисунка.

Компоновке усилителя следует уделить особое внимание. Провода, соединяющие усилитель с блоком питания, должны быть максимально короткими и большого сечения.

Особенно это касается провода, соединяющего шину общего провода печатной платы с «нулем» блока питания - точкой соединения конденсаторов фильтра.

Если по каким-то причинам последнее требование невыполнимо, то «земляные» выводы конденсаторов С13, С14 лучше не соединять с общим проводом на плате, а, закоротив между собой, соединить с «нулем» блока питания отдельным проводом. К этому же месту подключаются и провода от акустических систем, как показано на рис.7.

Рис. 7. Разводка нуля и подключение АС в усилителе.

Качество компоновки стереоусилителя легко проверить, нагружая один его канал 4-омным эквивалентом нагрузки и подавая на вход этого канала меандр с частотой 2000 Гц, а контроль проводить по АС второго канала, вход которого закорочен. При правильной компоновке сигнала с частотой меандра в АС не должно быть.

Литература:

  1. Матюшкин В.П. - Линейный усилитель.
  2. Проектирование транзисторных усилителей звуковых частот - Н.Л. Безладнов, Б.Я.Герценштейн, В.И. Кожанов и др. -М.: Связь, 1976.
  3. Костин В. - Психоакустические критерии качества звучания и выбор параметров УМЗЧ. Радио-1987-12.
  4. Хлыпало Е.И. - Расчет и проектирование нелинейных корректирующих устройств в автоматических системах, 1982.

Ответы Матюшкина В.П. на вопросы тех, кто хочет повторить конструкцию усилителя

- Какова скорость нарастания выходного напряжения? Ответ: Скорость нарастания выходного напряжения не менее 20 В/мкс при включенной ООС.

Какова величина коэффициента усиления? Ответ: Величина Ку определяется величиной коэффициента передачи цепи ООС (обратна ей) и на звуковых частотах - главным образом отношением R14/R10 (R15/R13). Измеренная его величина около 86.

- Какое максимальное напряжение допустимо на входе усилителя без ухудшения его характеристик?

Ответ: При ограничении пиков сигнала в выходном каскаде искажения не компенсируются, поскольку «исправляющее» напряжение звеньев МПОС уже не может изменить ивых. В такие моменты параметры усилителя соответствуют усилителю без МПОС в режиме ограничения, и искажения значительны. Следовательно, ивх не должно быть больше номинального.

- Можно ли избежать использования эмиттерных повторителей, т.е. сократить путь прохождения сигнала?

Ответ: Без эмиттерных повторителей обойтись нельзя. Они необходимы для согласования высокого Rвых буферного каскада и звена МПОС со сравнительно низким Rвх усилителя напряжения. Кроме того, ЭП нужны для усиления сигнала по току, т.к. только они вместе с VT11, VT12 определяют ток раскачки оконечного каскада (VT13, VT14 по току не усиливают, т.к. включены по схеме с ОБ).

- Можно ли понизить отношение сигнал/шум за счет применения в УМЗЧ полевых транзисторов. Если да, то каких и в каких каскадах?

Ответ: В первых каскадах канала усиления необходимо применять комплементарные пары полевых транзисторов с граничной частотой усиления не менее 200 МГц. В звеньях МПОС вполне возможно применение низкочастотных транзисторов, однако для основного канала они не подходят.

В принципе весь УМЗЧ можно выполнить на полевых транзисторах, но это будет уже другая конструкция.

- Можно ли увеличить выходную мощность УМЗЧ, т.е. количество выходных транзисторов?

Наиболее простой вариант - использование вместо VT21, VT22 более современных и мощных КТ8101, КТ8102 и увеличение напряжения питания до ±46 В. Тогда в качестве VT13, VT14 нужно использовать КТ502Е, КТ503Е. Сопротивление резисторов R46, R47 нужно увеличить до 1,5 кОм, а R36, R37 - до 5,1 кОм.

Желательно увеличить емкость конденсаторов в блоке питания. Возможно также понадобится изменить номиналы корректирующих элементов C5, C6, C8, C9, R18 для обеспечения устойчивости. В результате номинальная мощность возрастает по крайней мере до 150 Вт на нагрузке 4 Ом при номинальном входном напряжении ~ 0,4 В.

- Каким должен быть блок питания УМЗЧ: стабилизированным или нет?

Ответ: Блок питания - нестабилизированный двухполярный выпрямитель с емкостями конденсаторов фильтра 10000 мкФ. Применение импульсных источников питания нежелательно, поскольку они создают значительные ВЧ наводки на цепи УМЗЧ.

- Какова должна быть площадь теплоотводов транзисторов VT19-VT22?

Ответ: Площадь поверхности радиаторов выходных транзисторов должна быть не менее 400 см2. В более мощном варианте УМЗЧ (см. выше) она должна быть увеличена до 600 см2. В этом случае следует снабдить небольшими теплоотводами из листового алюминия толщиной 1,5 мм размером 2х3 см2 и транзисторы VT19, VT20.

- Какими диодами можно заменить КД520А?

Ответ: Они могут быть заменены другими кремниевыми диодами, например,серий КД503, Д219, Д220. Поскольку они определяют рабочие точки соответствующих транзисторов, нужно проверить коллекторный ток VT11, VT12, VT13, VT14 в режиме молчания, величина которого должна быть около 5 мА и не более.

Если он значительно меньше, можно увеличить количество последовательно соединенных диодов по сравнению со схемой, если ток больше -уменьшить сопротивление резисторов R28, R29 (для уменьшения 1к VT11, VT12) и увеличить сопротивление резисторов R32, R35 (для уменьшения 1к VT13, VT14).

- Возможна ли замена подстроечных резисторов R7, R20, R31, R53, R67 проволочными типа СП- 5?

- Какое должно быть сопротивление источника сигналов для настройки усилителя?

Ответ: Выходное сопротивление источника сигналов, подключаемого к узловой точке, должно быть не менее десятков килоом, но при слишком большом Rвых уменьшается регистрируемый сигнал. Я настраивал усилитель, подключая источник сигнала через резистор сопротивлением 16- 20 кОм.

При настройке второго контура Rвых нужно уменьшить до ~2 кОм, а выходное напряжение источника увеличить до нескольких вольт, поскольку при этом регистрируемый сигнал существенно меньше, чем при настройке первого контура.

- Какой допустимый уровень постоянной составляющей на выходе усилителя в точках А и В?

Ответ: На выходе УМЗЧ уровень постоянной составляющей должен быть возможно ближе к нулю. Допустимым можно считать 20- 50 мВ. В точках А и В уровень постоянной составляющей может быть нулевым только при идеальной комплементарности пар транзисторов VT5, VT6 и VT9, VT10.

Поскольку на самом деле разброс входных характеристик достигает десятых долей вольта, то и упомянутый уровень должен отличаться от нуля на величину этого разброса, если более приоритетным (как в данном случае) является поддержание одинаковых токов коллекторов в каждой из пар транзисторов. Наличие постоянной составляющей в этих точках не имет принципиального значения.

- Возможна ли подстройка токов коллекторов транзисторов VT11, VT12 резисторами R33, R34 (подстройка резисторами R28, R29 невозможна)?

Ответ: Возможна, но не желательна, так как коэффициент передачи канала усиления сильно зависит от сопротивлений резисторов R33, R34, и изменение их может привести к самовозбуждению, для устранения которого потребуется изменить номиналы других элементов коррекции.

Следует действовать, как указано в РА2/99 (с. 12). Замечу, что при R28=R29=0 1к транзисторов VT11, VT12 тоже будет равен нулю, поэтому уменьшить ток коллекторов уменьшением сопротивлений резисторов R28 и R29 всегда можно. Важно изменять сопротивления одинаково и одновременно. Если это не удается, то либо неисправны транзисторы, либо потенциал в точке В слишком велик, и его нужно отрегулировать с помощью R31.

- Какова причина того, что второй контур МПОС (VT29- VT32) не удается настроить? Испытания проводились в обоих каналах усилителя, все элементы МПОС исправны, напряжения на транзисторах соответствуют рекомендованным в статье.

Ответ: В-контур МПОС настроить сложнее, хотя принцип настройки одинаков. Во-первых, трудно получить значительный уровень сигнала на выходе усилителя. Во- вторых, при подключении имитатора к усилителю напряжения и оконечному каскаду легко наступает самовозбуждение, а даже при незначительном возбуждении R67 уже практически не действует. Поэтому при настройке нужно контролировать отсутствие генераций.

В- контур можно настроить по минимуму нелинейных искажений при проведении эксперимента, описанного в конце статьи. Номиналы элементов схемы выбраны так, что даже без настройки точность установки а1, у1 порядка 10%, и задача сводится к достижению максимально возможного эффекта.

- Требуется ли подбирать транзисторы по коэффициенту усиления?

Ответ: Биполярные транзисторы (в основном канале усиления) подбирать не нужно. Полевые транзисторы (в контурах МПОС) желательно подобрать по значениям начального тока стока и напряжения отсечки.

Ответ: Вначале был собран один УМЗЧ. После доводки схемы она была повторена как второй канал стереоусилителя. Он был работоспособен и имел близкие к первому характеристики без подбора элементов (не считая полевых транзисторов). Это свидетельствует о хорошей повторяемости конструкции.

Радиолюбитель из г. Житомира Дубченко Р. собрал усилитель, слушает его с акустикой S- 90 и доволен звучанием. Сообщил, что у него получились практически все эксперименты с контурами МПОС (настройка и подавление искажений), описанные в статье.

Ответ: Судя по симптомам, проблемы не в самом усилителе, а от неправильной стыковки его с источником сигнала (ИС), блоком питания (БП) и нагрузкой. Входное сопротивление усилителя сравнительно велико, поэтому его вход чувствителен к наводкам.

Ни в коем случае нельзя переносить "земляной" вывод нагрузки к общей шине печатной платы. Коллекторный провод каждого выходного транзистора нужно свить в один жгут с эмиттерным, базовый провод оставить свободным. Если длина проводов больше 10 см, следует укоротить их.

Шум исчезает после подключения первого контура МПОС к точке А. До этого он, действительно, ощутим. Однако пока усилитель не налажен, контуры МПОС подключать не следует. Сначала надо добиться устойчивой работы усилителя на эквивалент нагрузки и только потом подключать АС.

- Какие транзисторы серий КП103 и КП303 можно применять, какой допустимый разброс их параметров и какое номинальное напряжение между стоком и истоком?

Ответ: Можно применять транзисторы КП103Е, Ж, И; КП303А, Б, Ж с разбросом параметров 20-30%. иси.ном ~9 В. Приводим также ответы автора на вопросы по статье В. П. Матюшкина"Физиологическое регулирование тембра" (см. ниже)

- Какую функциональную зависимость должен иметь переменный резистор R15 (рис.4,а)?

Ответ: Лучше использовать переменные резисторы R14, R15 с линейной характеристикой регулирования.

- Какие схемы предварительного усилителя, регуляторов громкости и стереобаланса применил автор?

Ответ: Можно использовать любые схемы этих устройств.

- Являются ли кривые на графике рис.4,б в высокочастотной области продолжением кривых в низкочастотной (кривые 0, 1, 2)?

Ответ: Высокочастотные части АЧХ на рис.4,б показаны при различных положениях движка R15 для иллюстрации их характерной формы. Вид их при f>>1 кГц практически не зависит от положения переключателя SA1. Другими словами, регулировки тембра НЧ и ВЧ не зависят друг от друга, как в обычных регуляторах тембра.

Виктор Жуковский, г. Красноармейск Донецкой обл.

УМЗЧ ВВ-2010 — новая раз­работка из широко известной ли­нейки усилителей УМЗЧ BB (вы­сокой верности) [ 1; 2; 5]. На ряд использованных технических ре­шений оказали влияние работы Агеева СИ. .

Усилитель обеспечивает Kr порядка 0,001% на частоте 20 кГц при Рвых = 150 Вт на нагрузке 8 Ом, полоса частот малого сигна­ла по уровню -3 дБ — 0 Гц … 800 кГц, скорость нарастания выход­ного напряжения -100 В/мкс, от­ношение сигнал/шум и сигнал/ фон -120 дБ.

Благодаря применению ОУ, работающего в облегчённом ре­жиме, а также использованию в усилителе напряжения только каскадов с OK и ОБ, охваченных глубокими местными ООС, УМЗЧ BB отличается высокой линейно­стью ещё до охвата общей ООС. В самом первом усилителе высо­кой верности ещё в 1985 году были применены решения, до тех пор использовавшиеся только в измерительной техни­ке: режимы по постоянному току поддерживает отдельный сер­висный узел, для снижения уровня интерфейсных искажений охвачено общей обратной отрицательной связью переходное сопротивление контактной группы реле коммутации АС, а спе­циальный узел эффективно компенсирует влияние на эти ис­кажения сопротивления кабелей АС. Традиция сохранилась и в УМЗЧ ВВ-2010, вместе с тем общая ООС охватывает и со­противление выходного ФНЧ.

В абсолютном большинстве конструкций других УМЗЧ, как профессиональных, так и любительских, многие их этих реше­ний отсутствуют до сих пор. Вместе с тем высокие техничес­кие характеристики и аудиофильские достоинства УМЗЧ BB достигнуты простыми схемотехническими решениями и мини­мумом активных элементов. По сути, это сравнительно неслож­ный усилитель: один канал не торопясь можно собрать за пару дней, а настройка заключается лишь в установке необходимо­го тока покоя выходных транзисторов. Специально для начи­нающих радиолюбителей разработана методика поузловой, покаскадной проверки работоспособности и наладки, пользу­ясь которой можно гарантированно локализовать места воз­можных ошибок и предотвратить их возможные последствия ещё до полной сборки УМЗЧ. На все возможные вопросы по этому или подобным усилителям есть подробные объяснения, как на бумажных носителях, так и в Интернете.

На входе усилителя предусмотрен ФВЧ R1C1 с частотой среза 1,6 Гц, рис.1. Но эффективность работы устройства ста­билизации режимов позволяет усилителю работать со вход­ным сигналом, содержащим до 400 мВ напряжения постоян­ной составляющей. Поэтому С1 исключён, что реализует из­вечную аудиофильскую мечту о тракте без конденсаторов © и заметно улучшает звучание усилителя.

Ёмкость конденсатора С2 входного ФНЧ R2C2 выбрана так, чтобы частота среза входного ФНЧ с учётом выходного сопро­тивления предусилителя 500 Ом -1 кОм находилась в преде­лах от 120 до 200 кГц. На вход ОУ DA1 вынесена цепь частот­ной коррекции R3R5C3, ограничивающая полосу отрабатыва­емых гармоник и помех, поступающих по цепи ООС со сторо­ны выхода УМЗЧ, полосой 215 кГц по уровню -3 дБ и повыша­ющая устойчивость усилителя. Эта цепь позволяет уменьшить разностный сигнал выше частоты среза цепи и тем исключить напрасную перегрузку усилителя напряжения сигналами вы­сокочастотных наводок, помех и гармоник, устраняя возмож­ность возникновения динамических интермодуляционных ис­кажений (TIM; DIM).

Далее сигнал поступает на вход малошумящего операци­онного усилителя с полевыми транзисторами на входе DA1. Много «претензий» к УМЗЧ BB предъявляются оппонентами по поводу применения на входе ОУ, якобы ухудшающего ка­чество звучания и «крадущего виртуальную глубину» звука. В связи с этим необходимо обратить внимание на некоторые вполне очевидные особенности работы ОУ в УМЗЧ ВВ.

Операционные усилители предварительных усилителей, послеЦАПовые ОУ вынуждены развивать несколько вольт вы­ходного напряжения. Поскольку коэффициент усиления ОУ невелик и составляет от 500 до 2.000 раз на 20 кГц, это указы­вает на их работу с относительно большим напряжением раз­ностного сигнала — от нескольких сот микровольт на НЧ до не­скольких милливольт на 20 кГц и высокую вероятность внесе­ния входным каскадом ОУ интермодуляционных искажений. Выходное напряжение этих ОУ равно выходному напряжению последнего каскада усиления напряжения, выполненного обыч­но по схеме с ОЭ. Выходное напряжение в несколько вольт говорит о работе этого каскада с довольно большими входны­ми и выходными напряжениями, и как следствие — внесении им искажений в усиливаемый сигнал. ОУ нагружен на сопро­тивление параллельно включенных цепи ООС и нагрузки, со­ставляющее иногда несколько килоом, что требует от выход­ного повторителя усилителя выходного тока до нескольких миллиампер. Поэтому изменения тока выходного повторите­ля ИМС, выходные каскады которой потребляют ток не более 2 мА, довольно значительны, что также указывает на внесение ими искажений в усиливаемый сигнал. Видим, что входной каскад, каскад усиления напряжения и выходной каскад ОУ могут вносить искажения.

А вот схемотехника усилителя высокой верности благода­ря высоким усилению и входному сопротивлению транзистор­ной части усилителя напряжения обеспечивает весьма щадя­щие условия работы ОУ DA1. Судите сами. Даже в развившем номинальное выходное напряжение 50 В УМЗЧ входной диф­ференциальный каскад ОУ работает с разностными сигнала­ми напряжением от 12 мкВ на частотах 500 Гц до 500 мкВ на частоте 20 кГц. Соотношение высокой входной перегрузочной способности дифкаскада, выполненного на полевых транзис­торах, и мизерного напряжения разностного сигнала обеспе­чивает высокую линейность усиления сигнала. Выходное на­пряжение ОУ не превышает 300 мВ. что говорит о малом входном напряжении каскада усиления напряжения с общим эмит­тером из состава операционного усилителя — до 60 мкВ — и линейном режиме его работы. Выходной каскад ОУ отдаёт в нагрузку порядка 100 кОм со стороны базы VT2 переменный ток не более 3 мкА. Следовательно, выходной каскад ОУ тоже работает в предельно облегчённом режиме, практически на холостом ходу. На реальном музыкальном сигнале напряже­ния и токи большую часть времени на порядок меньше приве­денных значений.

Из сравнения напряжений разностного и выходного сиг­налов, а также тока нагрузки видно, что в целом операцион­ный усилитель в УМЗЧ BB работает в сотни раз более лёгком, а, значит, и линейном режиме, чем режим ОУ предусилителей и послеЦАПовых ОУ CD-проигрывателей, служащих источни­ками сигнала для УМЗЧ с любой глубиной ООС, а также и вов­се без оной. Следовательно, один и тот же ОУ будет вносить в составе УМЗЧ BB гораздо меньшие искажения, чем в одиноч­ном включении.

Изредка встречается мнение, что вносимые каскадом ис­кажения неоднозначно зависят от напряжения входного сиг­нала. Это ошибка. Зависимость проявления нелинейности кас­када от напряжения входного сигнала может подчиняться тому или иному закону, но она всегда однозначна: увеличение это­го напряжения никогда не приводит к уменьшению вносимых искажений, а только к увеличению.

Известно, что уровень продуктов искажений, приходящийся на данную частоту, снижается пропорционально глубине от­рицательной обратной связи для этой частоты. Коэффициент усиления холостого хода, до охвата усилителя ООС, на низ­ких частотах ввиду малости входного сигнала измерить невоз­можно. Согласно расчётам, развиваемое до охвата ООС уси­ление холостого хода позволяет достичь глубины ООС 104 дБ на частотах до 500 Гц. Измерения для частот, начиная с 10 кГц, показывают, что глубина ООС на частоте 10 кГц достига­ет 80 дБ, на частоте 20 кГц — 72 дБ, на частоте 50 кГц — 62 дБ и 40 дБ — на частоте 200 кГц. На рис.2 показаны амплитудно-частотные характеристики УМЗЧ ВВ-2010 и, для сравнения, сходного по сложности УМЗЧ Леонида Зуева .

Высокое усиление до охвата ООС — основная особенность схемотехники усилителей ВВ. Поскольку целью всех схемотех­нических ухищрений является достижение высокой линейнос­ти и большого усиления для ведения глубокой ООС в макси­мально широкой полосе частот, это означает, что подобными структурами исчерпываются схемотехнические методы совер­шенствования параметров усилителей. Дальнейшее снижение искажений может быть обеспечено только конструктивными мерами, направленными на уменьшение наводок гармоник выходного каскада на входные цепи, особенно — на цепь ин­вертирующего входа, усиление от которой максимально.

Ещё одна особенность схемотехники УМЗЧ BB заключает­ся в токовом управлении выходным каскадом усилителя на­пряжения. Входной ОУ управляет каскадом преобразования напряжение-ток, выполненным с OK и ОБ, а полученный ток вычитается из тока покоя каскада, выполненного по схеме с ОБ.

Применение линеаризирующего резистора R17 сопротив­лением 1 кОм в дифференциальном каскаде VT1, VT2 на тран­зисторах разной структуры с последовательным питанием по­вышает линейность преобразования выходного напряжения ОУ DA1 в ток коллектора VT2 созданием местной ООС глубиной 40 дБ. Это можно видеть из сравнения суммы собственных сопротивлений эмиттеров VT1, VT2 — примерно по 5 Ом — с сопротивлением R17, или суммы тепловых напряжений VT1, VT2 — около 50 мВ — с падением напряжения на сопротивлении R17, составляющем 5,2 — 5,6 В.

У построенных по рассматриваемой схемотехнике усили­телей наблюдается резкий, 40 дБ на декаду частоты, спад уси­ления свыше частоты 13…16 кГц. Сигнал ошибки, представля­ющий собой продукты искаже­ний, на частотах выше 20 кГц на два-три порядка меньше полез­ного звукового сигнала. Это даёт возможность конвертировать из­быточную на этих частотах линей­ность дифкаскада VT1, VT2 в по­вышение коэффициента усиле­ния транзисторной части УН. Вви­ду незначительных изменений тока дифкаскада VT1, VT2 при усилении слабых сигналов его линейность с уменьшением глу­бины местной ООС существенно не ухудшается, а вот работа ОУ DA1, от режима работы которого на этих частотах зависит линей­ность всего усилителя, запас уси­ления облегчит, так как все на­пряжения, определяющие вноси­мые операционным усилителем искажения, начиная от разно­стного сигнала до выходного, уменьшаются пропорционально выигрышу в усилении на данной частоте.

Цепи коррекции на опереже­ние по фазе R18C13 и R19C16 оп­тимизировались в симуляторе с целью уменьшить разностное на­пряжение ОУ до частот в несколь­ко мегагерц. Удалось повысить усиление УМЗЧ ВВ-2010 по срав­нению с УМЗЧ ВВ-2008 на часто­тах порядка нескольких сот кило­герц. Выигрыш в усилении соста­вил 4 дБ на частоте 200 кГц, 6 -на 300 кГц, 8,6 — на 500 кГц, 10,5 дБ — на 800 кГц, 11 дБ — на 1 МГц и от 10 до 12 дБ — на частотах выше 2 МГц. Это видно из результатов симуляции, рис.3, где нижняя кривая относится к АЧХ цепи коррекции на опережения УМЗЧ ВВ-2008, а верхняя -УМЗЧ ВВ-2010.

VD7 защищает эмиттерный переход VT1 от обратного на­пряжения, возникающего вследствие протекания токов пере­зарядки С13, С16 в режиме ограничения выходного сигнала УМЗЧ по напряжению и возникающих при этом предельных напряжениях с высокой скоростью изменения на выходе ОУ DA1.

Выходной каскад усилителя напряжения выполнен на тран­зисторе VT3, включенном по схеме с общей базой, что исклю­чает проникновение сигнала из выходных цепей каскада во входные и повышает его устойчивость. Каскад с ОБ, нагру­женный на генератор тока на транзисторе VT5 и входное со­противление выходного каскада, развивает высокое устойчи­вое усиление — до 13.000…15.000 раз. Выбор сопротивления резистора R24 вдвое меньшим сопротивления резистора R26 гарантирует равенство токов покоя VT1, VT2 и VT3, VT5. R24, R26 обеспечивают местные ООС, уменьшающие действие эффекта Эрли — изменение п21э в зависимости от коллектор­ного напряжения и повышают исходную линейность усилите­ля на 40 дБ и 46 дБ соответственно. Питание УН отдельным напряжением, по модулю на 15 В выше напряжения выходных каскадов, позволяет устранить эффект квазинасыщения тран­зисторов VT3, VT5, проявляющийся в уменьшении п21э при снижении напряжения коллектор-база ниже 7 В.

Трёхкаскадный выходной повторитель собран на биполяр­ных транзисторах и особых комментариев не требует. Не пы­тайтесь бороться с энтропией ©, экономя на токе покоя вы­ходных транзисторов. Он не должен быть менее 250 мА; в ав­торском варианте — 320 мА.

До срабатывания реле включения AC К1 усилитель охва­чен ООС1, реализованной включением делителя R6R4. Точ­ность соблюдения сопротивления R6 и согласованность этих сопротивлений в разных каналах не существенна, но для со­хранения устойчивости усилителя важно, чтобы сопротивле­ние R6 не было намного ниже суммы сопротивлений R8 и R70. Срабатыванием реле К1 ООС1 отключается и в работу всту­пает цепь ООС2, образованная R8R70C44 и R4, и охватываю­щая контактную группу К1.1, где R70C44 исключает выходной ФНЧ R71L1 R72C47 из цепи ОООС на частотах выше 33 кГц. Частотнозависимая ООС R7C10 формирует спад АЧХ УМЗЧ до выходного ФНЧ на частоте 800 кГц по уровню -3 дБ и обес­печивает запас по глубине ООС выше этой частоты. Спад АЧХ на клеммах AC выше частоты 280 кГц по уровню -3 дБ обеспе­чен совместным действием R7C10 и выходного ФНЧ R71L1 -R72C47.

Резонансные свойства громкоговорителей приводят к из­лучению диффузором затухающих звуковых колебаний, при­звуков после импульсного воздействия и генерации собствен­ного напряжения при пересечении витками катушки громко­говорителя линий магнитного поля в зазоре магнитной систе­мы. Коэффициент демпфирования показывает, как велика амплитуда колебаний диффузора и сколь быстро они затуха­ют при нагрузке AC как генератора на полное сопротивление со стороны УМЗЧ. Этот коэффициент равен отношению сопро­тивления AC к сумме выходного сопротивления УМЗЧ, пере­ходного сопротивления контактной группы реле коммутации АС, сопротивления намотанной обычно проводом недостаточ­ного диаметра катушки индуктивности выходного ФНЧ, пере­ходного сопротивления зажимов кабелей AC и сопротивления собственно кабелей АС.

Кроме того, полное сопротивление акустических систем нелинейно. Протекание искажённых токов по проводам кабе­лей AC создаёт падение напряжения с большой долей нели­нейных искажений, также вычитающееся из неискажённого вы­ходного напряжения усилителя. Поэтому сигнал на зажимах AC искажён гораздо больше, чем на выходе УМЗЧ. Это так называемые интерфейсные искажения.

Для уменьшения этих искажений применена компенсация всех составляющих полного выходного сопротивления усили­теля. Собственное выходное сопротивление УМЗЧ вместе с переходным сопротивлением контактов реле и сопротивлени­ем провода катушки индуктивности выходного ФНЧ уменьше­но действием глубокой общей ООС, взятой с правого вывода L1. Кроме того, подключением правого вывода R70 к «горя­чей» клемме AC можно легко организовать компенсацию пе­реходного сопротивления зажима кабеля AC и сопротивления одного из проводов АС, не опасаясь генерации УМЗЧ из-за фазовых сдвигов в охваченных ООС проводах.

Узел компенсации сопротивления проводов AC выполнен в виде инвертирующего усилителя с Ky = -2 на ОУ DA2, R10, С4, R11 и R9. Входным напряжением для этого усилителя слу­жит падение напряжения на «холодном» («земляном») прово­де АС. Поскольку его сопротивление равно сопротивлению «горячего» провода кабеля АС, для компенсации сопротивле­ния обоих проводов достаточно удвоить напряжение на «хо­лодном» проводе, инвертировать его и через резистор R9 с сопротивлением, равным сумме сопротивлений R8 и R70 цепи ООС, подать на инвертирующий вход ОУ DA1. Тогда выход­ное напряжение УМЗЧ увеличится на сумму падений напря­жений на проводах АС, что равносильно устранению влияния их сопротивления на коэффициент демпфирования и уровень интерфейсных искажений на зажимах АС. Компенсация паде­ния на сопротивлении проводов AC нелинейной составляющей противоЭДС громкоговорителей особенно нужна на нижних частотах звукового диапазона. Напряжение сигнала на ВЧ-громкоговорителе ограничивается подключенными последова­тельно с ним резистором и конденсатором. Их комплексное сопротивление гораздо больше сопротивления проводов ка­беля АС, поэтому компенсация этого сопротивления на ВЧ лишена смысла. Исходя из этого интегрирующая цепь R11C4 ограничивает полосу рабочих частот компенсатора значени­ем 22 кГц.

Особо следует заметить: сопротивление «горячего» про­вода кабеля AC может компенсироваться путём охвата его общей ООС подключением правого вывода R70 специальным проводом к «горячей» клемме АС. В этом случае понадобится компенсация только сопротивления «холодного» провода AC и коэффициент усиления компенсатора сопротивления прово­дов необходимо уменьшить до значения Ку=-1 выбором со­противления резистора R10 равным сопротивлению резисто­ра R11.

Узел токовой защиты предотвращает повреждение выход­ных транзисторов при коротких замыканиях в нагрузке. Дат­чиком тока служат резисторы R53 — R56 и R57 — R60, чего впол­не достаточно. Протекание через эти резисторы выходного тока усилителя создаёт падение напряжения, которое прикла­дывается к делителю R41R42. Напряжение со значением боль­ше порогового открывает транзистор VT10, а его коллектор­ный ток открывает VT8 триггерной ячейки VT8VT9. Эта ячейка переходит в устойчивое состояние с открытыми транзистора­ми и шунтирует цепь HL1VD8, уменьшая ток через стабилит­рон до нуля и запирая VT3. Разрядка С21 небольшим током базы VT3 может занять несколько миллисекунд. После сраба­тывания триггерной ячейки напряжение на нижней обкладке С23, заряженного напряжением на светодиоде HL1 до 1,6 В, повышается с уровня -7,2 В от положительной шины питания УН до уровня -1,2 B 1 напряжение на верхней обкладке этого конденсатора также повышается на 5 В. С21 быстро разряжа­ется через резистор R30 на С23, транзистор VT3 запирается. Тем временем открывается VT6 и через R33, R36 открывает VT7. VT7 шунтирует стабилитрон VD9, разряжает через R31 конденсатор С22 и запирает транзистор VT5. Не получая на­пряжения смещения, транзисторы выходного каскада также запираются.

Восстановление исходного состояния триггера и включе­ние УМЗЧ производится нажатием на кнопку SA1 «Сброс за­щиты». С27 заряжается током коллектора VT9 и шунтирует цепь базы VT8, запирая триггерную ячейку. Если к этому моменту аварийная ситуация устранена и VT10 заперт, ячейка перехо­дит в состояние с устойчиво закрытыми транзисторами. Зак­рываются VT6, VT7, на базы VT3, VT5 подаётся опорное на­пряжение и усилитель входит в рабочий режим. Если корот­кое замыкание в нагрузке УМЗЧ продолжается, защита сра­батывает вновь, даже если конденсатор С27 подключен SA1. Защита работает настолько эффективно, что во время работ по настройке коррекции усилитель несколько раз обесточи­вался для мелких перепаек …прикосновением к неинвертиру-ющему входу. Возникающее самовозбуждение приводило к увеличению тока выходных транзисторов, а защита отключа­ла усилитель. Хотя нельзя предлагать этот грубый метод как правило, но благодаря токовой защите он не причинил вреда выходным транзисторам.

Работа компенсатора сопротивления кабелей АС.

Эффективность работы компенсатора УМЗЧ ВВ-2008 про­верялась старым аудиофильским методом, на слух, коммута­цией входа компенсатора между компенсирующим проводом и общим проводом усилителя. Улучшение звука было явно за­метно, да и будущему хозяину не терпелось получить усили­тель, поэтому измерений влияния компенсатора не проводи­лось. Преимущества схемы с «кабелечисткой» были столь оче­видны, что конфигурация «компенсатор+интегратор» была при­нята как стандартный узел для установки во всех разрабаты­ваемых усилителях.

Удивительно, сколь много излишних споров вокруг полез­ности/ненужности компенсации сопротивления кабелей раз­горелось в Интернете. Как водится, особенно настаивали на прослушивании нелинейного сигнала те, кому предельно про­стая схема кабелечистки казалась сложной и непонятной, зат­раты на неё — непомерными, а установка — трудоёмкой ©. Выс­казывались даже предложения, что, раз уж тратится столь мно­го средств на сам усилитель, то грех экономить на святом, а нужно пойти наилучшим, гламурным путём, каким ходит всё цивилизованное человечество и …приобрести нормальные, че­ловеческие © сверхдорогие кабели из драгметаллов. К мое­му большому удивлению, масла в огонь подлили заявления весьма уважаемых специалистов о ненужности узла компен­сации в домашних условиях, в том числе тех специалистов, которые в своих усилителях этот узел с успехом применяют. Весьма прискорбно, что многие коллеги-радиолюбители с не­доверием отнеслись к сообщениям о повышении качества зву­чания на НЧ и СЧ с включением компенсатора, изо всех сил избегали этого простого пути улучшения работы УМЗЧ, чем обокрали сами себя.

Для документализации истины было проведено небольшое исследование. От генератора ГЗ-118 на УМЗЧ ВВ-2010 был подан ряд частот в районе резонансной частоты АС, напряже­ние контролировалось осциллографом С1-117, а Kr на клеммах AC измерялся ИНИ С6-8, рис.4. Резистор R1 установлен во избежание наводок на вход компенсатора во время пере­ключения его между контрольным и общим проводом. В экс­перименте использовались распространённые и общедоступ­ные кабели AC длиной 3 м и сечением жилы 6 кв. мм, а также акустическая система GIGA FS Il с диапазоном частот 25 -22.000 Гц, номинальным сопротивлением 8 Ом и номиналь­ной мощностью 90 Вт фирмы Acoustic Kingdom.

К сожалению, схемотехника усилителей сигнала гармоник из состава С6-8 предусматривает применение оксидных кон­денсаторов высокой ёмкости в цепях ООС. Это приводит к влиянию низкочастотных шумов этих конденсаторов на разре­шение прибора на низких частотах, вследствие чего его раз­решение на НЧ ухудшается. При измерении Kr сигнала частотой 25 Гц от ГЗ-118 напрямую С6-8 по­казания прибора пляшут вокруг значе­ния 0,02%. Обойти это ограничение с помощью режекторного фильтра гене­ратора ГЗ-118 в случае с измерением эффективности компенсатора не пред­ставляется возможным, т.к. ряд дискрет­ных значений частот настройки 2Т-филь-тра ограничен на НЧ значениями 20,60, 120, 200 Гц и не позволяет измерять Kr на интересующих нас частотах. Поэто­му, скрепя сердце, уровень в 0,02% был принят как нулевой, эталонный.

На частоте 20 Гц при напряжении на клеммах AC 3 В ампл., что соответству­ет выходной мощности 0,56 Вт на на­грузке 8 Ом, Kr составил 0,02% со вклю­ченным компенсатором и 0,06% — после его отключения. При напряжении 10 В ампл, что соответствует выходной мощ­ности 6,25 Вт, значение Kr 0,02% и 0,08% соответственно, при напряжении 20 В ампл и мощности 25 Вт — 0,016% и 0,11%, а при напряжении 30 В ампл и мощности 56 Вт — 0,02% и 0,13%.

Зная облегчённое отношение изго­товителей импортной аппаратуры к зна­чениям надписей, касающихся мощно­сти, а также помня чудесное, после при­нятия западных стандартов, превраще­ние акустической системы 35АС-1 с мощностью низкочастотного громкого­ворителя 30 Вт в S-90, долговременная мощность более 56 Вт на AC не подавалась.

На частоте 25 Гц при мощности 25 Вт Kr составил 0,02% и 0,12% с вклю­ченным/выключенным узлом компенса­ции, а при мощности 56 Вт — 0,02% и 0,15%.

Заодно была проверена необходимость и эффективность охвата выходного ФНЧ общей ООС. На частоте 25 Гц при мощ­ности 56 Вт и включенном последовательно в один из прово­дов кабеля AC выходного RL-RC ФНЧ, подобного установлен­ному в сверхлинейном УМЗЧ , Kr с выключенным компенса­тором достигает 0,18%. На частоте 30 Гц при мощности 56 Вт Kr 0,02% и 0,06% с включенным/выключенным узлом компен­сации. На частоте 35 Гц при мощности 56 Вт Kr 0,02% и 0,04% с включенным/выключенным узлом компенсации. На частотах 40 и 90 Гц при мощности 56 Вт Kr 0,02% и 0,04% с включен­ным/выключенным узлом компенсации, а на частоте 60 Гц -0,02% и 0,06%.

Выводы очевидны. Наблюдается наличие нелинейных ис­кажений сигнала на клеммах АС. Отчётливо фиксируется ухуд­шение линейности сигнала на клеммах AC с включением её через нескомпенсированное, не охваченное ООС сопротивле­ние ФНЧ, содержащего 70 см сравнительно тонкого провода. Зависимость уровня искажений от подводимой к AC мощнос­ти позволяет предположить, что он зависит от соотношения мощности сигнала и номинальной мощности НЧ-громкогово-рителей АС. Искажения наиболее ярко выражены на частотах вблизи резонансной. Генерируемая динамиками в ответ на воздействие звукового сигнала противоЭДС шунтируется сум­мой выходного сопротивления УМЗЧ и сопротивления прово­дов кабеля АС, поэтому уровень искажений на клеммах AC прямо зависит от сопротивления этих проводов и выходного сопротивления усилителя.

Диффузор плохо демпфированного низкочастотного гром­коговорителя сам по себе излучает призвуки, и, кроме того, этот громкоговоритель генерирует широкий хвост продуктов нелинейных и интермодуляционных искажений, которые вос­производит громкоговоритель среднечастотный. Этим и объяс­няется ухудшение звучания на средних частотах.

Несмотря на принятое вследствие неидеальности ИНИ допущение нулевого уровня Kr в 0,02%, влияние компенсато­ра сопротивления кабелей на искажения сигала на клеммах AC отмечается отчётливо и однозначно. Можно констатиро­вать полное соответствие выводов, сделанных после прослу­шивания работы узла компенсации на музыкальном сигнале, и результатов инструментальных измерений.

Улучшение, явно слышимое при включении кабелечистки, может быть объяснено тем, что с исчезновением искажений на клеммах AC среднечастотный громкоговоритель прекраща­ет воспроизводить всю эту грязь. Видимо, поэтому, за счёт уменьшения или исключения воспроизведения искажений среднечастотным громкоговорителем двухкабельная схема включения АС, т.н. «бивайринг», когда НЧ и СЧ-ВЧ звенья под­ключаются разными кабелями, имеет преимущество в звуке по сравнению с однокабельной схемой. Впрочем, поскольку в двухкабельной схеме искажённый сигнал на клеммах НЧ-сек-ции AC никуда не исчезает, эта схема проигрывает варианту с компесатором по коэффициенту демпирования свободных колебаний диффузора низкочастотного громкоговорителя.

Физику не обманешь, и для приличного звучания недоста­точно получить блестящие показатели на выходе усилителя при активной нагрузке, но необходимо также не потерять линей­ность после доставки сигнала на клеммы АС. В составе хоро­шего усилителя совершенно необходим компенсатор, выпол­ненный по той или иной схеме.

Интегратор.

Также была проверена эффективность и возможности уменьшения погрешности интегратора на DA3. В УМЗЧ BB с ОУ TL071 выходное постоянное напряжение находится в пре­делах 6…9 мВ и уменьшить это напряжение включением до­полнительного резистора в цепь неинвертирующего входа не удалось.

Действие низкочастотных шумов, характерных для ОУ с ПТ-входом, вследствие охвата глубокой ООС через частотноза-висимую цепь R16R13C5C6 проявляется в виде нестабильно­сти выходного напряжения величиной в несколько милливольт, или -60 дБ относительно выходного напряжения при номиналь­ной выходной мощности, на частотах ниже 1 Гц, не воспроиз­водимых АС.

В интернете упоминалось о низком сопротивлении защит­ных диодов VD1…VD4, что, якобы, вносит погрешность в работу интегратора из-за образования делителя (R16+R13)/R VD2|VD4. . Дляпроверки обратного сопротивления защитных диодов была собрана схема рис. 6. Здесь ОУ DA1, включенный по схеме ин­вертирующего усилителя, охва­чен ООС через R2, его выход­ное напряжение пропорцио­нально току в цепи проверяемо­го диода VD2 и защитного ре­зистора R2 с коэффициентом 1 мВ/нА, а сопротивлению цепи R2VD2 — с коэффициентом 1 мВ/15 ГОм. Чтобы исключить влияние аддитивных погрешно­стей ОУ — напряжения смеще­ния и входного тока на результаты измерения тока утечки ди­ода, необходимо вычислить только разность между собствен­ным напряжением на выходе ОУ, измеренным без проверяе­мого диода, и напряжением на выходе ОУ после его установ­ки. Практически разница выходных напряжений ОУ в несколь­ко милливольт даёт значение обратного сопротивления диода порядка десяти — пятнадцати гигаом при обратном напряже­нии 15 В. Очевидно, что ток утечки не станет больше с умень­шением напряжения на диоде до уровня нескольких милли­вольт, характерного для разностного напряжения ОУ интегра­тора и компенсатора.

А вот фотоэффект, свойственный диодам, помещённым в стекляный корпус, действительно приводит к значительному изменению выходного напряжения УМЗЧ. При освещении их лампой накаливания в 60 Вт с расстояния 20 см постоянное напряжение на выходе УМЗЧ возрастало до 20…3O мВ. Хотя вряд ли внутри корпуса усилителя может наблюдаться сходный уровень освещённости, капля краски, нанесённая на эти диоды, устранила зависимость режимов УМЗЧ от освещенности. Согласно результатам симуляции, спад АЧХ УМЗЧ не на­блюдается даже на частоте 1 миллигерц. Но уменьшать посто­янную времени R16R13C5C6 не следует. Фазы переменных напряжений на выходах интегратора и компенсатора проти­воположны, и с уменьшением ёмкости конден­саторов или сопротивления резисторов интег­ратора увеличение его выходного напряжения может ухудшить компенсацию сопротивления кабелей АС.

Сравнение звучания усилителей. Звучание собранного усилителя сравнива­лось со звучанием нескольких зарубежных уси­лителей промышленного производства. Источ­ником служил CD-проигрыватель фирмы «Кем­бридж Аудио», для раскачки и регулировки уровня звука оконечных УМЗЧ применялся предварительный усилитель «Радиотехника УП-001», у «Sugden А21а» и NAD С352 использова­лись штатные органы регулировки.

Первым проверили легендарный, эпатажный и чертовски дорогой английский УМЗЧ «Sugden А21а», работающий в классе А с вы­ходной мощностью 25 Вт. Что примечательно, в сопроводительной документации на усь анг­личане сочли за благо уровень нелинейных ис­кажений не указывать. Дескать, не в искажени­ях дело, а в духовности. «Sugden А21а>» проиг­рал УМЗЧ ВВ-2010 при сопоставимой мощнос­ти как по уровню, так и по чёткости, увереннос­ти, благородству звучания на низких частотах. Это и не удивительно, учитывая особенности его схемотехники: всего лишь двухкаскадный квазисимметричный выходной повторитель на транзисторах одной структуры, собранный по схемотехнике 70-х годов прошлого столетия с относительно высоким выходным сопротивле­нием и включенным на выходе ещё более уве­личивающим полное выходное сопротивление электролитическим конденсатором — это после­днее решение само по себе ухудшает звучание любых усилителей на низких и средних часто­тах. На средних и высоких частотах УМЗЧ BB показал более высокую детализацию, прозрач­ность и отличную проработку сцены, когда пев­цы, инструменты могли быть чётко локализова­ны по звуку. Кстати, к слову о корреляции объективных данных измерений и субъективных впечатлений от звучания: в одной из журналь­ных статей конкурентов Sugden-a его Kr опре­делялся на уровне 0,03% на частоте 10 кГц.

Следующим был тоже английский усили­тель NAD С352. Общее впечатление было тем же: ярко выраженный «ведёрный» звук англи­чанина на НЧ не оставил ему никаких шансов, тогда как работа УМЗЧ BB была признана бе­зукоризненной. В отличие от NADa, звучание которого ассоциировалось с густым кустарни­ком, шерстью, ватой, звучание ВВ-2010 на сред­них и высоких частотах позволяло отчётливо различать голоса исполнителей в общем хоре и инструментов в оркестре. В работе NAD С352 явно выражался эффект лучшей слышимости более голосистого исполнителя, более громко­го инструмента. Как выразился сам хозяин уси­лителя, в звуке УМЗЧ BB вокалисты не «закри-кивали» друг друга, а скрипка не сражалась в силе звука с гитарой или трубой, но все инст­рументы мирно и гармонично «дружили» в об­щем звуковом образе мелодии. На высоких ча­стотах УМЗЧ ВВ-2010, по словам образно мыс­лящих аудиофилов, звучит так, «как будто ри­сует звук тонкой-тонкой кисточкой». Эти эффек­ты можно отнести к разнице в интермодуляци­онных искажениях усилителей.

Звучание УМЗЧ Rotel RB 981 было сходно со звучанием NAD С352, за исключением лучшей работы на низких частотах, всё же УМЗЧ ВВ-2010 в чёткости управления AC на низ­ких частотах, а также прозрачности, деликатности звучания на средних и высоких частотах оставался вне конкуренции.

Самым интересным в плане понимания образа мышления аудиофилов было общее мнение, что, несмотря на превосход­ство над этими тремя УМЗЧ, они привносят в звук «теплоту», чем делают его приятнее, а УМЗЧ BB работает ровно, «к звуку относится нейтрально».

Японский Dual CV1460 проиграл в звуке сразу после вклю­чения самым очевидным для всех образом, и тратить времени на его подробное прослушивание не стали. Его Kr находился в пределах 0,04…0,07% на малой мощности.

Основные впечатления от сравнения усилителей в основ­ных чертах были полностью идентичными: УМЗЧ BB опережал их в звуке безоговорочно и однозначно. Поэтому дальнейшие испытания были признаны излишними. В итоге победила друж­ба, каждый получил желаемое: для тёплого, задушевного зву­чания — Sugden, NAD и Rotel, а чтобы услышать записанное на диск режиссёром — УМЗЧ ВВ-2010.

Лично мне УМЗЧ высокой верности нравится лёгким, чистым, безукоризненным, благородным звучанием, он играючи воспро­изводят пассажи любой сложности. Как выразился мой знако­мый, аудиофил с большим стажем, звуки ударных установок на низких частотах он отрабатывает без вариантов, как пресс, на средних он звучит так, как будто его нет, а на высоких он как будто рисует звук тоненькой кисточкой. Для меня ненапрягающий звук УМЗЧ BB ассоциируется с лёгкостью работы каскадов.

Литература

1. Сухов И. УМЗЧ высокой верности. «Радио», 1989, № 6, стр. 55-57; №7, стр. 57-61.

2. Ридико Л. УМЗЧ BB на современной элементной базе с микроконтроллерной системой управления. «Радиохобби», 2001, №5, стр. 52-57; №6, стр. 50-54; 2002, №2, стр. 53-56.

3. Агеев С. Сверхлинейный УМЗЧ с глубокой ООС «Радио», 1999, №№ 10… 12; «Радио», 2000, №№ 1; 2; 4…6; 9… 11.

4. Зуев. Л. УМЗЧ с параллельной ООС. «Радио», 2005, №2 , стр. 14.

5. Жуковский В. Зачем нужно быстродействие УМЗЧ (или «УМЗЧ ВВ-2008»). «Радиохобби», 2008, №1, стр. 55-59; №2, стр. 49-55.

Ремонт УМЗЧ – чуть ли не самый частый из вопросов, задаваемых на радиолюбительских форумах. И при том – один из самых сложных. Конечно, существуют «излюбленные» неисправности, но в принципе, выйти из строя может любой из нескольких десятков, а то и сотен компонентов, входящих в состав усилителя. Тем более, что и схем УМЗЧ – великое множество.

Конечно, охватить все случаи, встречающиеся в практике ремонта, не представляется возможным, однако, если следовать определенному алгоритму, то в подавляющем большинстве случаев удается восстановить работоспособность устройства за вполне приемлемое время. Данный алгоритм был выработан мною по опыту ремонта около полусотни различных УМЗЧ, от простейших, на несколько ватт или десятков ватт, до концертных «монстров» по 1…2 кВт на канал, большинство из которых поступало на ремонт без принципиальных схем.

Главной задачей ремонта любого УМЗЧ является локализация вышедшего из строя элемента, повлекшего за собой неработоспособность как всей схемы, так и выход из строя других каскадов. Поскольку в электротехнике бывает всего 2 типа дефектов:

  1. наличие контакта там, где его быть не должно;
  2. отсутствие контакта там, где он должен быть.

То «сверхзадачей» ремонта является нахождение пробитого или оборванного элемента!

А для этого – отыскать тот каскад, где он находится. Дальше – «дело техники». Как говорят врачи: «Правильный диагноз - половина лечения».

Перечень оборудования и инструментов, необходимых (или по крайней мере крайне желательных) при ремонте:

  1. отвертки, бокорезы, пассатижи, скальпель (нож), пинцет, лупа – т.е., минимальный обязательный набор обычного монтажного инструмента;
  2. тестер (мультиметр);
  3. осциллограф;
  4. набор ламп накаливания на различные напряжения – от 220 В до 12 В (по 2 шт.);
  5. низкочастотный генератор синусоидального напряжения (весьма желательно);
  6. двухполярный регулируемый источник питания на 15-25 (35) В с ограничением;
  7. выходного тока (весьма желательно);
  8. измеритель емкости и эквивалентного последовательного сопротивления (ESR) конденсаторов (весьма желательно);
  9. и, наконец, самый главный инструмент – голова на плечах (обязательно!).

Рассмотрим данный алгоритм на примере ремонта гипотетического транзисторного УМЗЧ с биполярными транзисторами в выходных каскадах (рис.1), не слишком примитивного, но и не очень сложного. Такая схема является наиболее распространенной «классикой жанра». Функционально он состоит из следующих блоков и узлов:

  1. двухполярный источник питания (не показан);
  2. входной дифференциальный каскад на транзисторах VT2, VT5 с токовым зеркалом на транзисторах VT1 и VT4 в их коллекторных нагрузках и стабилизатором их эмиттерного тока на VT3;
  3. усилитель напряжения на VT6 и VT8 в каскадном включении, с нагрузкой в виде генератора тока на VT7;
  4. узел термостабилизации тока покоя на транзисторе VT9;
  5. узел защиты выходных транзисторов от перегрузки по току на транзисторах VT10 и VT11;
  6. усилитель тока на комплементарных тройках транзисторов, включенных по схеме Дарлингтона в каждом плече (VT12VT14VT16 и VT13VT15VT17).

Рисунок 1

1. Первым пунктом любого ремонта является внешний осмотр сабжа и его обнюхивание (!). Уже одно это позволяет иногда хотя бы предположить сущность дефекта. Если пахнет паленым – значит, что-то явно горело.

2. Проверка наличия сетевого напряжения на входе: тупо перегорел сетевой предохранитель, разболталось крепление проводов сетевого шнура в вилке, обрыв в сетевом шнуре и т.п. Этап – банальнейший по своей сущности, но на котором ремонт заканчивается примерно в 10% случаев.

3. Ищем схему на усилитель. В инструкции, в Интернете, у знакомых, друзей и т.п. К сожалению, все чаше и чаще в последнее время – безуспешно. Не нашли – тяжко вздыхаем, посыпаем голову пеплом и принимаемся за вырисовывание схемы по плате. Можно этот этап и пропустить. Если неважен результат. Но лучше не пропускать. Муторно, долго, противно, но – «Надо, Федя, надо…» ((С) «Операция «Ы»…).

4. Вскрываем сабж и производим внешний осмотр его «потрохов». Применяем лупу, если нужно. Можно увидеть разрушенные корпуса п/п приборов, потемневшие, обуглившиеся или разрушенные резисторы, вздутые электролитические конденсаторы или потеки электролита из них, оборванные проводники, дорожки печатной платы и т.п. Если таковое найдено – это еще не повод для радости: разрушенные детали могут быть следствием выхода из строя какой-нибудь «блошки», которая визуально цела.

5. Проверяем блок питания. Отпаиваем провода, идущие от БП к схеме (или отсоединяем разъем, если он есть). Вынимаем сетевой предохранитель и к контактам его держателя подпаиваем лампу на 220 В (60-100 Вт). Она ограничит ток первичной обмотки трансформатора, равно как и токи во вторичных обмотках. Включаем усилитель. Лампа должна мигнуть (на время зарядки конденсаторов фильтра) и погаснуть (допускается слабое свечение нити). Это значит, что К.З. по первичной обмотке сетевого трансформатора нет, как нет явного К.З. в его вторичных обмотках. Тестером на режиме переменного напряжения измеряем напряжение на первичной обмотке трансформатора и на лампе. Их сумма должна быть равна сетевому. Измеряем напряжения на вторичных обмотках. Они должны быть пропорциональными тому, что измерено фактически на первичной обмотке (относительно номинального). Лампу можно отключать, ставить предохранитель на место и включать усилитель прямо в сеть. Повторяем проверку напряжений на первичной и вторичной обмотках. Соотношение (пропорция) между ними должно быть таким же, как при измерении с лампой. Лампа горит постоянно в полный накал – значит, имеем К.З. в первичной цепи: проверяем целостность изоляции проводов, идущих от сетевого разъема, тумблер питания, держатель предохранителя. Отпаиваем один из поводов, идущих на первичную обмотку трансформатора. Лампа погасла – скорее всего вышла из строя первичная обмотка (или межвитковое замыкание). Лампа горит постоянно в неполный накал – скорее всего, дефект во вторичных обмотках или в подключенных к ним цепях. Отпаиваем по одному проводу, идущему от вторичных обмоток к выпрямителя(м). Не перепутать, Кулибин! Чтобы потом не было мучительно больно от неправильной подпайки назад (промаркировать, например, с помощью кусочков липкой малярной ленты). Лампа погасла – значит, с трансформатором все в порядке. Горит – снова тяжко вздыхаем и либо ищем ему замену, либо перематываем.

6. Определились, что трансформатор в порядке, а дефект в выпрямителях или конденсаторах фильтра. Прозваниваем диоды (желательно отпаять под одному проводу идущему к их выводам, либо выпаять, если это интегральный мост) тестером в режиме омметра на минимальном пределе. Цифровые тестеры в этом режиме часто врут, поэтому желательно использовать стрелочный прибор. Лично я давно пользуюсь прозвонкой – «пищалкой» (рис. 2, 3). Диоды (мост) пробиты или оборваны – меняем. Целые – «звоним» конденсаторы фильтра. Перед измерением их надо разрядить (!!!) через 2-ваттный резистор сопротивлением около 100 Ом. Иначе можно сжечь тестер. Если конденсатор цел – при замыкании стрелка сначала отклоняется до максимума, а потом довольно медленно (по мере заряда конденсатора) «ползет» влево. Меняем подключение щупов. Стрелка сначала зашкаливает вправо (на конденсаторе остался заряд от предыдущего измерения) а потом опять ползет влево. Если есть измеритель емкости и ESR, то весьма желательно использовать его. Пробитые или оборванные конденсаторы меняем.

Рисунок 2

Рисунок 3

7. Выпрямители и конденсаторы целые, но на выходе блока питания стоит стабилизатор напряжения? Не беда. Между выходом выпрямителя(ей) и входом(ами) стабилизатора(ов) включаем лампу(ы) (цепочку(и) ламп) на суммарное напряжение близкое к указанному на корпусе конденсатора фильтра. Лампа загорелась – дефект в стабилизаторе (если он интегральный), либо в цепи формирования опорного напряжения (если он на дискретных элементах), либо пробит конденсатор на его выходе. Пробитый регулирующий транзистор определяется прозваниванием его выводов (выпаять!).

8. С блоком питания все в порядке (напряжения на его выходе симметричные и номинальные)? Переходим к самому главному – собственно усилителю. Подбираем лампу (или цепочки ламп) на суммарное напряжение, не ниже номинального с выхода БП и через нее (них) подключаем плату усилителя. Причем, желательно к каждому из каналов по отдельности. Включаем. Загорелись обе лампы – пробиты оба плеча выходных каскадов. Только одна – одно из плеч. Хотя и не факт. Лампы не горят или горит только одна из них. Значит, выходные каскады, скорее всего, целые. К выходу подключаем резистор на 10-20 Ом. Включаем. Лампы должны мигнуть (на плате обычно есть еще конденсаторы по питанию). Подаем на вход сигнал от генератора (регулятор усиления – на максимум). Лампы (обе!) зажглись. Значит, усилитель что-то усиливает, (хотя хрипит, фонит и т.п.) и дальнейший ремонт заключается в поиске элемента, выводящего его из режима. Об этом – ниже.

9. Для дальнейшей проверки лично я не использую штатный блок питания усилителя, а применяю 2-полярный стабилизированный БП с ограничением тока на уровне 0,5 А. Если такового нет – можно использовать и БП усилителя, подключенный, как было указано, через лампы накаливания. Только нужно тщательно изолировать их цоколи, чтобы случайно не вызвать КЗ и быть аккуратным, чтобы не разбить колбы. Но внешний БП – лучше. Заодно виден и потребляемый ток. Грамотно спроектированный УМЗЧ допускает колебания питающих напряжений в довольно больших пределах. Нам ведь не нужны при ремонте его супер-пупер параметры, достаточно просто работоспособности.

10. Итак, с БП всё в порядке. Переходим к плате усилителя (рис. 4). Перво-наперво надо локализовать каскад(ы) с пробитым(и)/оборванным(и) компонентом(ами). Для этого крайне желательно иметь осциллограф. Без него эффективность ремонта падает в разы. Хотя и с тестером можно тоже много чего сделать. Почти все измерения производятся без нагрузки (на холостом ходу). Допустим, что на выходе у нас «перекос» выходного напряжения от нескольких вольт до полного напряжения питания.

11. Для начала отключаем узел защиты, для чего выпаиваем из платы правые выводы диодов VD6 и VD7 (у меня в практике было три случая, когда причиной неработоспособности был выход из строя именно этого узла). Смотрим напряжение не выходе. Если нормализовалось (может быть остаточный перекос в несколько милливольт – это норма), прозваниваем VD6, VD7 и VT10, VT11. Могут быть обрывы и пробои пассивных элементов. Нашли пробитый элемент – меняем и восстанавливаем подключение диодов. На выходе ноль? Выходной сигнал (при подаче на вход сигнала от генератора) присутствует? Ремонт закончен. Ничего с сигналом на выходе не изменилось? Оставляем диоды отключенными и идем дальше.

12. Выпаиваем из платы правый вывод резистора ООС (R12 вместе с правым выводом C6), а также левые выводы R23 и R24, которые соединяем проволочной перемычкой (показана на рис. 4 красным) и через дополнительный резистор (без нумерации, порядка 10 кОм) соединяем с общим проводом. Перемыкаем проволочной перемычкой (красный цвет) коллекторы VT8 и VT7, исключая конденсатор С8 и узел термостабилизации тока покоя. В итоге усилитель разъединяется на два самостоятельных узла (входной каскад с усилителем напряжения и каскад выходных повторителей), которые должны работать самостоятельно. Смотрим, что имеем на выходе. Перекос напряжения остался? Значит, пробит(ы) транзистор(ы) «перекошенного» плеча. Выпаиваем, звоним, заменяем. Заодно проверяем и пассивные компоненты (резисторы). Наиболее частый вариант дефекта, однако должен заметить, что очень часто он является следствием выхода из строя какого-то элемента в предыдущих каскадах (включая узел защиты!). Поэтому последующие пункты все-таки желательно выполнить. Перекоса нет? Значит, выходной каскад предположительно цел. На всякий случай подаем сигнал от генератора амплитудой 3-5 В в точку «Б» (соединения резисторов R23 и R24). На выходе должна быть синусоида с хорошо выраженной «ступенькой», верхняя и нижняя полуволны которой симметричны. Если они не симметричны – значит, «подгорел» (потерял параметры) какой-то из транзисторов плеча, где она ниже. Выпаиваем, звоним. Заодно проверяем и пассивные компоненты (резисторы) Сигнала на выходе нет вообще? Значит, вылетели силовые транзисторы обоих плеч «насквозь». Печально, но придется выпаивать все и прозванивать с последующей заменой. Не исключены и обрывы компонентов. Тут уж нужно включать «8-й инструмент». Проверяем, заменяем…

Рисунок 4

13. Добились симметричного повторения на выходе (со ступенькой) входного сигнала? Выходной каскад отремонтирован. А теперь нужно проверить работоспособность узла термостабилизации тока покоя (транзистор VT9). Иногда наблюдается нарушение контакта движка переменного резистора R22 с резистивной дорожкой. Если он включен в эмиттерной цепи, как показано на приведенной схеме, ничего страшного с выходным каскадом при этом произойти не может, т.к. в точке подключения базы VT9 к делителю R20–R22R21 напряжение просто повышается, он приоткрывается больше и, соответственно, снижается падение напряжения между его коллектором и эмиттером. В выходном сигнале простоя появится ярко выраженная «ступенька». Однако (очень даже нередко), подстроечный резистор ставится между коллектором и базой VT9. Крайне «дураконезащищенный» вариант! Тогда при потере контакта движка с резистивной дорожкой напряжение на базе VT9 снижается, он призакрывается и, соответственно, повышается падение напряжения между его коллектором и эмиттером, что ведет к резкому возрастанию тока покоя выходных транзисторов, их перегреву и, естественно, тепловому пробою. Еще более дурацкий вариант выполнения этого каскада – если база VT9 соединена только с движком переменного резистора. Тогда при потере контакта на ней может быть все, что угодно, с соответствующими последствиями для выходных каскадов. Если есть возможность, стоит переставить R22 в базо-эмиттерную цепь. Правда, при этом регулировка тока покоя станет выражено нелинейной от угла поворота движка, но IMHO это не такая уж и большая плата за надежность. Можно просто заменить транзистор VT9 на другой, с обратным типом проводимости, если позволяет разводка дорожек на плате. На работу узла термостабилизации это никак не повлияет, т.к. он является двухполюсником и не зависит от типа проводимости транзистора. Проверка этого каскада осложняется тем, что, как правило, соединения с коллекторами VT8 и VT7 сделаны печатными проводниками. Придется поднимать ножки резисторов и делать соединения проводочками (на рис. 4 показаны разрывы проводников). Между шинами положительного и отрицательного напряжений питания и, соответственно, коллектором и эмиттером VT9 включаются резисторы примерно по 10 кОм (без нумерации, показаны красным) и замеряется падение напряжения на транзисторе VT9 при вращении движка подстроечного резистора R22. В зависимости от количества каскадов повторителей оно должно изменяться в пределах примерно 3-5 В (для «троек, как на схеме) или 2,5-3,5 В (для «двоек»).

14. Вот и добрались мы до самого интересного, но и самого сложного – дифкаскада с усилителем напряжения. Они работают только совместно и разделить их на отдельные узлы принципиально невозможно. Перемыкаем правый вывод резистора ООС R12 с колекторами VT8 и VT7 (точка «А», являющаяся теперь его «выходом»). Получаем «урезанный» (без выходных каскадов) маломощный ОУ, вполне работоспособный на холостом ходе (без нагрузки). Подаем на вход сигнал амплитудой от 0,01 до 1 В и смотрим, что будет в точке А. Если наблюдаем усиленный сигнал симметричной относительно земли формы, без искажений, значит данный каскад цел.

15. Сигнал резко снижен по амплитуде (мало усиление) – в первую очередь проверить емкость конденсатора(ов) С3(С4, т.к. производители для экономии очень часто ставят только один полярный конденсатор на напряжение 50 В и больше, рассчитывая, что в обратной полярности он все равно будет работать, что не есть гут). При его подсыхании или пробое резко снижается коэффициент усиления. Если нет измерителя емкости – проверяем просто путем замены на заведомо исправный. Сигнал перекошен – в первую очередь проверить емкость конденсаторов С5 и С9, шунтирующих шины питания предусилительной части после резисторов R17 и R19 (если эти RC-фильтры вообще есть, т.к. нередко они не ставятся). На схеме приведены два распространенных варианта симметрирования нулевого уровня: резистором R6 или R7 (могут быть, конечно же, и другие), при нарушении контакта движка которых тоже может быть перекос выходного напряжения. Проверить вращением движка (хотя, если контакт нарушен «капитально», это может и не дать результата). Тогда попробовать перемкнуть пинцетом их крайние выводы с выводом движка. Сигнал вообще отсутствует – смотрим, а есть ли он вообще на входе (обрыв R3 или С1, К.З. в R1, R2, С2 и т.п.). Только сначала нужно выпаять базу VT2, т.к. на ней сигнал будет очень маленьким и смотреть на правом выводе резистора R3. Конечно, входные цепи могут сильно отличаться от приведенных на рисунке – включать «8-й инструмент». Помогает.

16. Естественно, описать все возможные причинно-следственные варианты дефектов мало реально. Поэтому дальше просто изложу, как проверять узлы и компоненты данного каскада. Стабилизаторы тока VT3 и VT7. В них возможны пробои или обрывы. Из платы выпаиваются коллекторы и замеряется ток между ними и землей. Естественно, сначала нужно рассчитать по напряжению на их базах и номиналам эмиттерных резисторов, каким он должен быть. (N.B.! В моей практике был случай самовозбуждения усилителя из-за чрезмерно большого номинала резистора R10, поставленного изготовителем. Помогла подстройка его номинала на полностью работающем усилителе – без указанного выше разделения на каскады). Аналогично можно проверить и транзистор VT8: если перемкнуть коллектор-эмиттер транзистора VT6, он также тупо превращается в генератор тока. Транзисторы дифкаскада VT2V5T и токового зеркала VT1VT4, а также VT6 проверяются их прозвонкой после отпайки. Лучше замерить коэффициент усиления (если тестер – с такой функцией). Желательно подобрать с одинаковыми коэффициентами усиления.

17. Пару слов «не для протокола». Почему-то в подавляющем большинстве случаев в каждый последующий каскад ставят транзисторы все большей и большей мощности. В этой зависимости есть одно исключение: на транзисторах каскада усиления напряжения (VT8 и VT7) рассеивается в 3-4 раза большая мощность, чем на предрайверных VT12 и VT23 (!!!). Поэтому, если есть такая возможность, их сто́ит сразу же заменить на транзисторы средней мощности. Неплохим вариантом будет КТ940/КТ9115 или аналогичные импортные.

18. Довольно нередкими дефектами в моей практике были непропаи («холодная» пайка к дорожкам/«пятачкам» или плохое облуживание выводов перед пайкой) ножек компонентов и обломы выводов транзисторов (особенно в пластмассовом корпусе) непосредственно возле корпуса, которые очень трудно было увидеть визуально. Пошатать транзисторы, внимательно наблюдая за их выводами. В крайнем случае – выпаять и впаять заново. Если проверили все активные компоненты, а дефект сохраняется – нужно (опять же, с тяжким вздохом), выпаять из платы хоть по одной ножке и проверить тестером номиналы пассивных компонентов. Нередки случаи обрывов постоянных резисторов без каких-либо внешних проявлений. Неэлектролитические конденсаторы, как правило, не пробиваются/обрываются, но всякое бывает…

19. Опять же, по опыту ремонта: если на плате видны потемневшие/обугленные резисторы, причем симметрично в обеих плечах, стоит пересчитать выделяемую на нем мощность. В житомирском усилителе «Dominator» производитель поставил в одном из каскадов резисторы по 0,25 Вт, которые регулярно горели (до меня было 3 ремонта). Когда я просчитал их необходимую мощность – чуть не упал со стула: оказалось, что на них должно рассеиваться по 3 (три!) ватта…

20. Наконец, все заработало… Восстанавливаем все «порушенные» соединения. Совет вроде бы и банальнейший, но сколько раз забываемый!!! Восстанавливаем в обратной последовательности и после каждого соединения проверяем усилитель на работоспособность. Нередко покаскадная проверка, вроде бы, показала, что все исправно, а после восстановления соединений дефект опять «выползал». Последними подпаиваем диоды каскада токовой защиты.

21. Выставляем ток покоя. Между БП и платой усилителя включаем (если они были отключены ранее) «гирлянду» ламп накаливания на соответствующее суммарное напряжение. Подключаем к выходу УМЗЧ эквивалент нагрузки (резистор на 4 или 8 Ом). Движок подстроечного резистора R22 устанавливаем в нижнее по схеме положение и на вход подаем сигнал от генератора частотой 10-20 кГц (!!!) такой амплитуды, чтобы на выходе выл сигнал не более 0,5-1 В. При таких уровне и частоте сигнала хорошо заметна «ступенька», которую трудно заметить на большом сигнале и малой частоте. Вращением движка R22 добиваемся ее устранения. При этом нити накала ламп должны немного светиться. Можно проконтролировать ток и амперметром, включив его параллельно каждой гирлянде ламп. Не сто́ит удивляться, если он будет заметно (но не более, чем в 1,5-2 раза в бо́льшую сторону) отличаться от того, что указано в рекомендациях по настройке – нам ведь важно не «соблюдение рекомендаций», а качество звучания! Как правило, в «рекомендациях» ток покоя значительно завышается, для гарантированного достижения запланированных параметров («по худшему»). Перемыкаем «гирлянды» перемычкой, повышаем уровень выходного сигнала до уровня 0,7 от максимального (когда начинается амплитудное ограничение выходного сигнала) и даем усилителю прогреться 20-30 минут. Этот режим является наиболее тяжелым для транзисторов выходного каскада – на них при этом рассеивается максимальная мощность. Если «ступенька» не появилась (при малом уровне сигнала), а ток покоя возрос не более, чем в 2 раза, настройку считаем законченной, иначе убираем «ступеньку» снова (как было указано выше).

22. Убираем все временные соединения (не забывать!!!), собираем усилитель окончательно, закрываем корпус и наливаем чарку, которую с чувством глубокого удовлетворения проделанной работой, выпиваем. А то работать не будет!

Конечно же, в рамках данной статьи не описаны нюансы ремонта усилителей с «экзотическими» каскадами, с ОУ на входе, с выходными транзисторами, включенными с ОЭ, с «двухэтажными» выходными каскадами и многое другое…

Поэтому ПРОДОЛЖЕНИЕ СЛЕДУЕТ…

Усилитель мощности Ланзар имеет две базовых схемы - первая полностью на биполярных транранзисторах (рис.1), вторая с использованием полевых в предпоследнем каскаде (рис. 2). На рисунке 3 приведена схема этого же усилителя, но выполненная в симмуляторе МС-8. Позиционные номера элементов практически совпадают, поэтому можно смотреть любую из схем.

Рисунок 1 Схема усилителя мощности ЛАНЗАР полностью на биполярных транзисторах.
УВЕЛИЧИТЬ


Рисунок 2 Схема усилителя мощности ЛАНЗАР с использованием полевых транзисторов в предпоследнем каскаде.
УВЕЛИЧИТЬ


Рисунок 3 Схема усилителя мощности ЛАНЗАР из симмулятора МС-8. УВЕЛИЧИТЬ

ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ УСТАНОВЛЕННЫХ В УСИЛИТЕЛЕ ЛАНЗАР

ДЛЯ БИПОЛЯРНОГО ВАРИАНТА

ДЛЯ ВАРИАНТА С ПОЛЕВИКАМИ

C3,C2 = 2 x 22µ0
C4 = 1 x 470p
C6,C7 = 2 x 470µ0 x 25V
C5,C8 = 2 x 0µ33
C11,C9 = 2 x 47µ0
C12,C13,C18 = 3 x 47p
C15,C17,C1,C10 = 4 x 1µ0
C21 = 1 x 0µ15
C19,C20 = 2 x 470µ0 x 100V
C14,C16 = 2 x 220µ0 x 100V

R1 = 1 x 27k
R2,R16 = 2 x 100
R8,R11,R9,R12 = 4 x 33
R7,R10 = 2 x 820
R5,R6 = 2 x 6k8
R3,R4 = 2 x 2k2
R14,R17 = 2 x 10
R15 = 1 x 3k3
R26,R23 = 2 x 0R33
R25 = 1 x 10k
R28,R29 = 2 x 3R9
R27,R24 = 2 x 0.33
R18 = 1 x 47
R19,R20,R22
R21 = 4 x 2R2
R13 = 1 x 470

VD1,VD2 = 2 x 15V
VD3,VD4 = 2 x 1N4007

VT2,VT4 = 2 x 2N5401
VT3,VT1 = 2 x 2N5551
VT5 = 1 x KSE350
VT6 = 1 x KSE340
VT7 = 1 x BD135
VT8 = 1 x 2SC5171
VT9 = 1 x 2SA1930

VT10,VT12 = 2 x 2SC5200
VT11,VT13 = 2 x 2SA1943

C3,C2 = 2 x 22µ0
C4 = 1 x 470p
C6,C7 = 2 x 470µ0 x 25V
C5,C8 = 2 x 0µ33
C11,C10 = 2 x 47µ0
C12,C13,C18 = 3 x 47p
C15,C17,C1,C9 = 4 x 1µ0
C21 = 1 x 0µ15
C19,C20 = 2 x 470µ0 x 100V
C14,C16 = 2 x 220µ0 x 100V

R1 = 1 x 27k
R2,R16 = 2 x 100
R8,R11,R9,R12 = 4 x 33
R7,R10 = 2 x 820
R5,R6 = 2 x 6k8
R4,R3 = 2 x 2k2
R14,R17 = 2 x 10
R15 = 1 x 3k3
R26,R23 = 2 x 0R33
R25 = 1 x 10k
R29,R28 = 2 x 3R9
R27,R24 = 2 x 0.33
R18 = 1 x 47
R19,R20,R22
R21 = 4 x 2R2
R13 = 1 x 470

VD1,VD2 = 2 x 15V
VD3,VD4 = 2 x 1N4007

VT8 = 1 x IRF640
VT9 = 1 x IRF9640
VT2,VT3 = 2 x 2N5401
VT4,VT1 = 2 x 2N5551
VT5 = 1 x KSE350
VT6 = 1 x KSE340
VT7 = 1 x BD135
VT10,VT12 = 2 x 2SC5200
VT11,VT13 = 2 x 2SA1943

Для примера возьмем напряжение питания равным ±60 В. Если монтаж выполнен правильно и нет не исправных деталей то получим карту напряжений, показанную на рисунке 7. Токи, протекающие через элементы усилителя мощности показаны на рисунке 8. Рассеиваемая мощность каждого элемента показана на рисунке 9 (на транзисторах VT5, VT6 рассеивается порядка 990 мВт, следовательно корпусу TO-126 требуется теплоотвод ).


Рисунок 7. Карта напряжений усилителя мощности ЛАНЗАР УВЕЛИЧИТЬ


Рисунок 8. Карта токов усилителя мощности УВЕЛИЧИТЬ


Рисунок 9. Карта рассеиваемых мощностей усилителя УВЕЛИЧИТЬ

Несколько слов о о деталях и монтаже:
Прежде всего следут обратить на правильность монтажа деталей, поскольку схема симметричная, то бывают довольно частыми ошибки. На рисунке 10 показано распложение деталей. Регулировка тока покоя (тока, протекающего через оконечные транзисторы при замкнутом на общий провод входе и компенсирующего вольт-амперную характеристику транзисторов) производится резистором Х1. При первом включении движок резистора должен находиться в верхенм по схеме положении, т.е. иметь максимальное сопротивление. Ток покоя должен составлять 30...60 мА. Ставить выше не имеет мысла - ни приборы, ни на слух ощутимых изменений не происходит. Для установки тока покоя производится измерение напряжения на любом из эмиттерных резисторов оконечного каскада и выставляется в соответствии с таблицей:

НАПРЯЖЕНИЕ НА ВЫВОДАХ ЭМИТТЕРНОГО РЕЗИСТОРА, В

СЛИШКОМ МАЛЕНЬКИЙ ТОК ПОКОЯ, ВОЗМОЖНЫ ИСКАЖЕНИЯ "СТУПЕНЬКА", НОРМАЛЬНЫЙ ТОК ПОКОЯ, ВЕЛИКОВАТ ТОК ПОКОЯ - ЛИШНИЙ НАГРЕВ, ЕСЛИ ЭТО НЕ ПОПЫТКА СОЗДАТЬ КЛАСС "А", ТО ЭТО АВАРИЙНЫЙ ТОК .

ТОК ПОКОЯ ОДНОЙ ПАРЫ ОКОНЕЧНЫХ ТРАНЗИСТОРОВ, мА


Рисунок 10 Расположение деталей на плате усилителя мощности. Показаны места, где возникают наиболее часто ошибки монтажа.

Поднимался вопрос о целесообразности использования в эмиттерных цепях оконечных транзисторов керамических резисторов. Можно использовать и МЛТ-2, по два штуки, включенных параллельно с номиналом 0,47...0,68 Ома. Однако вносимые керамическими резисторами искажения слишком малы, а вот тот факт, что они обрывные - при перегрузке они обрываются, т.е. их сопротивление становиться бесконечным, что довольно часто приводит к спасению оконечных транзисторов в критических ситуациях.
Площадь радиатора зависит от условий охлаждения, на рисунке 11 показан один из вариантов, крепить силовые транзисторы к теплоотводу необходимо через изоляционные прокладки . Лучше использовать слюду, поскольку она обладает довольно маленьким тепловым сопротивлением. Один из вариантов крепления транзисторов пказан нарисунке 12.


Рисунок 11 Один из вариантов радиатора для мощности 300 Вт при условии хорошей вентиляции


Рисунок 12 Один из вариантов крепления транзисторов усилителя мощности к радиатору.
Необходимо использовать изоляционные прокладки.

Перед монтажом силовых транзисторов, а так же в случае подозрений на их пробой, силовые транзисторы проверяются тестером. Предел на тестере устанавливается на проверку диодов (рис 13).


Рисунок 13 Проверка оконечных транзисторов усилителя перед монтажом и в случае подозрений на пробой транзисторов после критических ситуаций.

Стоит ли подбирать транзисторы по коф. усиления? Споров на эту тему довольно много и идея подбора элементов тянеться еще с глубоких семидесятых годов, когда качество элементной базы оставляло желать лучшего. На сегодня завод изготовитель гарантирует разброс параметров между транзисторами одной партии не более 2%, что уже само по себе говорит о хорошем качестве элементов. Кроме этого, учитывая то, что оконечные транзисторы 2SA1943 - 2SC5200 прочно обосновались в звукотехнике завод изготовитель начал выпус парных транзисторов, т.е. транзисторы и прямой, и обратной проводимости уже имеют одинаковые параметры, т.е. разницу не боле 2% (рис 14). К сожалению такие пары не всегда встречаютсяв продаже, тем не менее несколько раз нам доводилось покупать "близнецов". Однако даже имея разборос по коф. усиления между транзисторами прямой и обратной проводимости необходимо лишь следить за тем, чтобы транзисторы одной структуры были одной партии, поскольку включены они параллельно и разброс по h21 может вызывать перегрузку одного из транзисторов (у которого этот параметр выше) и как следствие - перегрев и выход из строя. Ну а разброс между транзисторами для положительной и отрицательной полуволн вполне компенсируется отрицательной обратной связью.


Рисунок 14 Транзисторы разной структуры, но одной партии.

Тоже самое относиться и к транзисторам дифкаскада - если они одной партии, т.е. куплены одновременно в одном месте, то шанс на то, что разница в параметрах будет более 5 % ОЧЕНЬ малы. Лично нам больше нравяться транзисторы 2N5551 - 2N5401 фирмы ФАИРЧАЛЬД, однако и ST звучат вполне достойно.
Однако это усилитель собирают и на отечественной элементной базе. Это вполне реально, однако давайте поправку на то, что у купленных КТ817 и найденных на полках у себя в мастерской, купленных еще в 90-х года параметры будут отличаться довольно сильно. Поэтому тут лучше все таки воспользаваться имеющимся почти во всех цифровых тестреах измерителем h21. Правда эта примочка в тестере показываетправду лишь для транзисторов малой мощности. Подбирать при ее помощи транзисторы оконечного каскада будет не совсм правильно, поскольку h21 зависит еще и от протекаемого тока. Именно поэому для отбраковки силовых транзисторов уже делают отдельные проверочные стенды. с регулируемых токо коллектора проверяемого транзистора (рис 15). Градуировка постоянного прибора для отбраковки транзисторов производиться таким образом, чтобы микроамперметр при токе коллектора 1 А отклонялся на половину шкалы, а при токе 2 А - полностью. Собирая усилитель только себе стенд можно и не делать, достаточно двух мультиметров с пределом измерения тока не менее 5 А.
Для произведения отбраковки следует взять любой транзистор из отбраковываемой партии и переменным резистором выставить ток коллектора равным 0,4...0,6 А для транзисторов предпоследнего каскада и 1...1,3 А для транзисторов оконечного каскада. Ну а далее все просто - к клемам подключаются транзисторы и по показаниям амперметра, включенного в коллектор выбираются транзисторы с одинаковыми показаниями, не забывая поглядывать на показания амперметра в базовой цепи - они тоже должны быть похожими. Разброс в 5 % вполне приемлем, для стрелочных индикаторов на шкале можно сделать метки "зеленого коридора" во время градуировки. Следует заметить, что подобные токи вызывают не плохой нагрев кристала транзистора, а учитывая то, что он без теплоотвода длительность замеров не следует растягивать во времени - кнопку SB1 удерживать в нажатом состоянии более чем 1...1,5 сек не следует . Подобная отбраковка прежде всего позвлит отобрать транзисторы с реально похожим коф усиления, а проверка мощных транзисторов цифровым мультиметром есть лишь проверка для успокоения совести - в режиме микротоков у мощных транзисторов коф усиления более 500 и даже небольшой разброс при проверке мультиметром в режимах реальных токов может оказаться огромным. Другими словами - проверяя коф усиления мощного транзистора показанаия мультиметра есть не что иное как абстрактная величина, не имеющая ни чего общего с коф усиления транзистора через переход коллектор-эмиттер протекат хотя бы 0,5 А.


Рисунок 15 Отбраковка мощных транзисторов по коф усиления.

Проходные конденсаторы С1-С3, С9-С11 имеют не совсем типовое включение, по сравнению с заводскими аналогами усилителей. Связанно это с тем, что при таком включении получается не полярный конденсатор довольно большой емкости, а использование плленочного конденсатора на 1 мкФ компенсирует не совсем корректную работу электролитов на высоких частотах. Другими словами эта реализация позволила получить более приятный звук усилителя, по сравнению с одним элетролитом или одним пленочным конденсатором.
В старых версиях Ланзар вместо диодов VD3, VD4 использовались резисторы на 10 Ом. Смена элементной базы позволила немного улучшить работу на пиках сигнала. Для более подробного рассмотрения этого вопроса обратимся к рисунку 3 .
В схеме смоделирован не идеальный источник питания, а более приблежонный к реальному, имеющему свое сопротивление (R30, R31). При воспроизведении синусоидального сигнала напряжение на шинах питания будет иметь вид, показанный на рисунке 16. В данном случае емкость конденсаторов фильтра питания составляет 4700 мкФ, что несколько маловато. Для нормальной работы усилителя емкость конденсаторов питания должна составлять не менее 10000 мкФ на один канал , можно и больше, но существенной разницы уже не заметно. Но вернемся к рисунку 16. Синией линией показано напряжение непосредственно на коллекторах транзисторов оконечного каскада, а красной линией - напряжение питания усилителя напряжения в случае использования резисторов вместо VD3, VD4. Как видно из рисунка напряжение питания оконечного каскада просело с 60 В и распологается между 58,3 В в паузе и 55,7 В на пике синусоидального сигнала. Благодарая тому, что конденсатор С14 не только заражается через развязывающий диод, но и разряжается на пиках сигнала напряжение питания усилителя напряжение приобретает вид красной линии на рисунке 16 и колебается от 56 В до 57,5 В, т.е имеет размах порядка 1,5 В.


Рисунок 16 форма напряжения при использовании развязывающих резисторов.


Рисунок 17 Форма напряжений питания на оконечных транзисторах и усилителе напряжения

Заменив резисторы на диоды VD3 и VD4 мы получаем напряжения, представленные на рисунке 17. Как видно из рисунка амплитуда пульсаций на коллекторах оконечных транзисторах почти не изменилась, а вот напряжение питания усилителя напряжения приобрело совсем другой вид. Прежде всего амплитуда уменьшилась с 1,5 В до 1 В, а так же в тот момент когда проходит пик сигнала напряжение питания УН проседает лишь до половины амплитуды, т.е. примерно на 0,5 В, в то время как при использовании резистора напряжение на пике сигнала проседает 1,2 В. Другими словами - простой заменой резисторов на диоды удалось уменьшить пульсации питания в усилителе напряжения в 2 с лишним раза.
Однако это теоритические выкладки. На практике эта замена позволяет получить "халявных" 4-5 Ватт, поскольку усилителя наступает при более высоком выходном напряжении и уменьшает искажения на пиках сигнала.
После сборки усилителя и регулировки тока покоя следует убедиться в отсутствии постоянного напряжения на выходе усилителя мощности. Если оно выше 0,1 В, то это уже однозначно требует корректировки режимов работы усилителя. В данном случае наиболее простым способом является подбор "подпирающего" резистора R1. Для наглядности приведем несколько вариантов этого номинала и покажем иземения постоянного напряжения на выходе усилителя на рисунке 18.


Рисунок 18 Изменение постоянного напряжения на выходе усилителя в зависимости от номана R1

Не смотря на то, что на симмуляторе оптимальное постоянное напряжение получилось лишь при R1 равным 8,2 кОм в реальных усилителях этот номинал составляет 15 кОм...27 кОм, в зависимости какого производителя используются транзисторы дифкаскада VT1-VT4.
Пожалуй стоит сказать несколько слов об отличиях усилителей мощности полгостью на биполярных транзисторах и с использованием полевиков в предпоследенм каскаде. Прежде всего при использовании полевых транзисторов ОЧЕНЬ сильно разгружается выходной каскад усилителя напряжения, поскольку затворы полевых транзисторов практически не имеют активного сопротивления - только емкость затвора является нагрузкой. В этом варианте схемотехника усилителя начинает наступать на пятки усилителям класса А, поскольку во всем диапазоне выходных мощностей ток протекающий через выходной каскад усилителя напряжения почти не изменятеся. Увеличение тока покоя предпоследнего каскада, работающего на плавающую нагрузку R18 и базы эмиттерных повторителей мощных транзисторов тоже меняется в небольших пределах, что в итоге привело к довольно заметному снижению THD. Однако в этой бочке меда есть и ложка дегтя - снизился КПД усилителя и уменьшилась выходная мощность усилителя, за счет необходимости подавать на затворы полевиков напряжение более 4 В для их открытия (для биполярного транзистора этот параметр составляет 0,6...0,7 В). На рисунке 19 показан пик синусоидального сигнала усилителя, выполненого на биполярных транзистора (синяя линия) и полевиках (красная линия) при максимальной амплитуде выходного сиганала.


Рисунок 19 Изменение амплитуды выходного сигнала при использовании разной элементной базы в усилителе.

Другими словами снижение THD заменой полевых транзисторов приводит к "недополучению" примерно 30 Вт, а уменьшение уровня THD примерно в 2 раза, так что именно ставить уже решать каждому персонально.
Так же следует помнить, что уровень THD зависит и от собственного коф усиления усилителя. В данном усилителе коф усиления зависит от номиналов резисторов R25 и R13 (при используемых номиналах коф усиления составляет почти 27 дБ). Расчитать коф усиления в дБ можно по формуле Ku =20 lg R25 / (R13 +1) , где R13 и R25 - сопротивление в Омах, 20 - множитель, lg - десятичный логарифм. Если необходимо расчитать коф усиления в разах, то формула приобретает вид Ku = R25 / (R13 + 1) . Этот расчет бывает необходим при изготовлении предварительного усилителя и вычисления амплитуды выходного сигнала в вольтах, чтобы исключить работу усилителя мощности в режиме жесткого клиппинга.
Снижение собственного коф. усиления до 21 дБ (R13 = 910 Ом) приводит к снижению уровня THD примерно в 1,7 раза при той же амплитуде выходного сигнала (увеличена амплитуда входного напряжения).

Ну а теперь несколько слов о самых популярных ошибках при сборке усилителя самостоятельно.
Одной из самых популярных ошибок является монтаж стабилитронов на 15 В не правильной полярностью , т.е. эти элементы работают не в режиме стабилизации напряжения, а как обычные диоды. Как правило такая ошибка вызывает появление на выходе постоянного напряжения, причем полярность может быть как положительной, так и отрицательной (чаще отрицательной). Величина напряжения базируется между 15 и 30 В. При этом ни один элемент не греется. На рисунке 20 показана карта напряжений при не правильном монтаже стабилитронов, которую выдал симмулятор. Ошибочный элементы выделены зеленым цветом.


Рисунок 20 Карта напряжений усилителя мощности с неправильно запаянными стабилитронами.

Следующей популярной ошибкой является монтаж транзисторов "вверх ногами" , т.е. когда путают коллектор и эмиттер местами. В этом случае так же наблюдается постоянное напряжение, отсутствие каких либо признаков жизни. Правда обратное включение транзисторов дифкаскада может привести к выходу их из строя, ну а дальше как повезет. Карта напряжений при "перевернутом" включении показан на рисунке 21.


Рисунок 21 Карта напряжений при "перевернутом" включении транзисторов дифкаскада.

Довольно часто транзисторы 2N5551 и 2N5401 путают местами , причем могут попутать так же и эмиттер с коллектором. На рисунке 22 показана карта напряжений усилителя при "правильном" монтаже попутанных местами транзисторов, а на рисунке 23 - транзисторы не только поменяны местами, но и перевернуты.


Рисунок 22 Транзитсторы дифкаскада попутаны местами.


Рисунок 23 Транзисторы дифкаскада попутаны местами, кроме этого попутаны местами коллектор и эмиттер.

Если попутаны местами транзисторы, а эмиттер-коллектор запаяны правильно, то на выходе усилителя наблюдается небольшое постоянное напряжение, регулируется ток покоя окнечных транзисторов, но звук либо отсутствует полностью, либо на уровне "кажется он играет". Перед монтажом на плату запаянных таким образом тразисторов их следует проверить на работоспособность. Если транзисторы поменяны местами, да еще и поменяны местами эмиттер-коллектор, то тут ситуация уже довольно критическая, поскольку в этом варианте для транзисторов дифкаскада полярность приложенного напряжения является правильной, а вот рабочие режимы нарушены. В этом варианте наблюдается сильный нагрев оконечных транзисторов (протекающий через них ток равен 2-4 А), небольшое постоянное напряжение на выходе и едва слышный звук.
Попутать цоколевку транзисторов последнего каскада усилителя напряжения довольно проблематично, при использовании транзисторов в корпусе ТО-220, а вот транзисторы в корпусе ТО-126 довольно часто впаивают "вверх ногами", меняя местами коллектор и эмиттер . В этом варианте наблюдается сильно искаженный выходной сигнал, плохая регулировка тока покоя, отсутствие нагрева транзисторов последнего каскада усилителя напряжения. Более подробная карта напряжения для этого варианта монтажа усилителя мощности показана на рисунке 24.


Рисунок 24 Транзисторы последнего каскада усилителя напряжения запаяны "вверх ногами".

Иногда путают местами транзисторы последнего каскада усилителя напряжения. В этом случае наблюдается небольшое постоянное напряжение на выходе усилителя, звук если и есть, то очень слабый и с огромными искажениями, ток покоя регулируется только в сторону увеличения. Карта напряжений усилителя с такой ошибкой показана на рисунке 25.


Рисунок 25 Ошибочный монтаж транзисторов последнего каскада усилителя напряжения.

Предпоследний каскад и оконечные транзисторы в усилителе местами путают слишком редко, поэтому этот вариант расматриваться не будет.
Иногда усилитель выходит из строя, самые частые причины для этого перегрев оконечных тразисторов или перегрузка. Недостаточная площадь теплоотвода или плохой тепловой контакт фланцев транзисторов может привести к нагреву кристалла оконечных транзисторов до температуры механического разрушения. Поэтому до полного ввода усилителя мощности в эксплуатацию необходимо убедиться в том, что винты или саморезы, крепящие оконечники к радиатору затануты полностью, изолирующиепрокладки между фланцами транзисторов и теплоотводом имеет хорошую смазку термопастой (рекомендуем старую, добрую КПТ-8), а так же размер прокладок больше размера транзистора минимум на 3 мм с каждой стороны. Если недостаточна площадь теплоотвода, а другого попросту нет, то можно воспользоваться вентиляторами на 12 В, которые используются в компьютерной технике. Если собранный усилитель планируется для работы только на мощностях выше средней (кафе, бары и т.д.) то куллер можно влючить на непрерывную работу, поскольку его все равно не будет слышно. Если же усилитель собран для домашенго использования и будет эксплуатироваться и на малых мощностях, то работу куллера уже будет слышно, а необходимость в охлаждении отпадает - радиатор почти не греется. Для таких режимо работы лучше испозовать управляемык куллеры. Несколько вариантовуправления куллером можно . Предлагаемые варианты управления куллерами основаны на контрле температуры радиатора и вклюячаются лишь по достижении радиатором определенной, регулируемой температуры. Решить проблему выхода из строя окнечных транзисторов можно либо установкой дополнительной защиты от перегрузки, либо аккуратным монтажом проводов идущих на акустическую систему (например использовать для подключения АС к усилителю автомобильных безкислородных проводов, которые кроме уменьшеного активного сопротивления имеют повышенную крепость изоляции, устойчивую к ударам и температуре).
Для примера рассмотрим несколько варианов выхода из строя оконечных транзисторов. На рисунке 26 показана карта напряжений в случае выхода обратных оконечных транзисторов (2SC5200) на обрыв, т.е. переходы отгорели и имеют максимально возможное сопротивление. В этом случае усилитель сохраняет рабочие режимы, на выходе сохраняется напряжение близкое в нулю, но вот качество звука однозначно желает лучше, поскольку воспроизводится только одна полуволна синусоиды - отрицательная (рис 27). Тоже самое будет при обрыве прямых оконечных транзисторов (2SA1943), только воспроизводится будет положительная полуволна.


Рисунок 26 Обратные оконечные транзисторы выгорели до обрыва.


Рисунок 27 Сигнал на выходе усилителя в случае, когда транзисторы 2SC5200 отгорели полностью

На рисунке 27 - карта напряжений в ситуации, когда оконечники вышли из строя и имеют максимально низкое сопротивление, т.е. закорочены. Этот вариант неисправности загоняет усилитель в ОЧЕНЬ жесткие условия и дальнейшие горение усилителя ограничивает только источник питания, поскольку потребляемый в этот момент ток может превысить 40 А. Оставшиеся в живых детали мгновенно набирают температуру, в том плече, где транзисторы еще исправны напряжение немного больше, чем в том, где собственно произошло замыкание на шину питания. Однако именно эта ситуация относиться к наиболее легкой диагностике - достаотчно до включения усилителя проверит мультиметром сопротивление переходов между собой, даже не выпаивая их из усилителя. Предел измерения, установленного на мультиметре - ПРОВЕРКА ДИОДОВ или ЗВУКОВАЯ ПРОЗВОНКА. Как правило выгоревшие транзисторы показывают сопротивление между переходами в диапазоне от 3 до 10 Ом.


Рисунок 27 Карта напряжений усилителя мощности в случае перегорания оконечных транзисторов(2SC5200) на короткое замыкание

Усилитель поведет себя точно так же в случае пробоя предпоследнего каскада - при отгороани выводов будет воспроизводиться только одна полуволна синусоиды, при коротком замыкании переходов - огромное потребление и нагрев.
При перегреве, когда считают, что радиатор на транзисторы последнего каскада усилителя напряжения не нужен (транзисторы VT5, VT6) они могут так же выйти из строя, причем как уйти на обрыв, так и на короткое замыкание. В случае отгорания переходов VT5 и бесконечно большого сопротивления переходов возникает ситуация, когда поддерживать ноль на выходе усилителя не чем, а приоткрытые оконечные транзисторы 2SA1943 потянут напряжение на выходе усилителя к минусу напряжения питания. Если нагрузка подключена, то величина постоянного напряжения будет зависеть от установленного тока покоя - чем он выше, тем будет больше величина отрицательного напряжения на выходе усилителя. Если нагрузка не подключена, то на выходе будет напряжение очень близкое по величине к минусовой шине питания (рис 28).


Рисунок 28 Транзистор усилителя напряжения VT5 "оборвался".

Если же транзистор в последнем каскаде усилителя напряжения VT5 вышел из строя и его переходы замкнулись, то при подключенной нагрузке на выходе будет довольно большое постоянное напряжение и ппротекающий через нагрузку постоянный ток, порядка 2-4 А. Если же нагрузка отключена, то напряжение на выходе усилителя будет почти равно положительной шине питания (рис. 29).


Рисунок 29 Транзистор усилителя напряжения VT5 "замкнулся".

На последок осталось только предложить несколько осцилограмм в наиболее координальных точках усилителя:


Напряжение на базах транзисторов дифкаскада при входном напряжении 2,2 В. Синия линия - базы VT1-VT2, красная линия - базы VT3-VT4. Как видно из рисунка и амплитудат и фаза сигнала практически совпадают.


Напряжение в точке соединения резисторов R8 и R11 (синяя линия) и в точке соединения резисторов R9 и R12 (красная линия). Входное напряжение 2,2 В.


Напряжение на коллекторах VT1 (красная линия), VT2 (зеленая), а так же на верхенм выводе R7 (синяя) и нижнем выводе R10 (сиреневая). ПРовал напряжения вызван рабтой на нагрузку и небольшим уменьшением питающего напряжения.


Напряжение на коллекторах VT5 (синим) и VT6 (красным. Входное напряжение уменьшено до 0,2 В, чтобы было наглядней видно, по по постоянному напряжению имеется разница примерно в 2,5 В

Осталось лишь пояснить на счет блока питания. Прежде всего мощность сетевого трансформатора для усилителя мощности в 300 Вт должна быть не менее 220-250 Вт и этого будет достаточно для воспроизведения даже очень жестких композиций.Более подробно о мощности блока питания усилителей мощности можно . Другими словами, если у вас есть трансформатор от лампового цветного телевизора, то это ИДЕАЛЬНЫЙ ТРАНСФОРМАТОР для одного канала усилителя позволяющего без проблем воспроизводить музыкальные композиции мощностью до 300-320 Вт.
Емкость конденсаторов фильтра блока питания должна быть не менее 10 000 мкФ на плечо, оптимально 15 000 мкФ. При использовании емкостей выше указанного номинала Вы попросту увеличиваете стоимость конструкции без какого либо заметного улучшения качества звука. Не следует забывать, что при использовании таких больших емкостей и напряжении питания выше 50 В на плечо мгновенные токи уже критически огромны, поэтому настоятельно рекомендуется использовать ситемы софт-старта.
Прежде всего настоятельно рекомендутеся перед сборкой какого либо усилителя скачать на ВСЕ полупроводниковые элементы описания заводов производителей (даташиты). Это даст возможность ознакомиться с элементной базой поближе и в случае отсутствия в продаже какого либо элемента найти ему замену. Кроме этого у вас будет под рукой правильная цоколевка транзисторов, что значительно увеличит шансы на правильный монтаж. Особо ленивым предлагается ОЧЕНЬ внимаетльно ознакомиться хотя бы с расположением выводов транзисторов, используемых в усилителе:

.
На последок осталось добавить, что далеко не всем требуется мощность 200-300 Вт, поэтому печатная плата была переработана под одну пару оконечных танзисторов. Данный файл выполнен одним из посетителей форума сайта "ПАЯЛЬНИК" в программе СПРИНТ-ЛАЙОУТ-5 (СКАЧАТЬ ПЛАТУ). Подробности о данной программе находяться .